Skip to main content

Integrated Pest and Disease Management in Greenhouse Ornamentals

  • Chapter
  • First Online:
Integrated Pest and Disease Management in Greenhouse Crops

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 9))

Abstract

Greenhouse ornamentals are part of a 55 billion USD global ornamentals industry. They present one of the greatest challenges to integrated pest and disease (IPDM) management because the crops are so diverse and often the entire plant must be aesthetically pleasing. Crop propagules are exchanged between continents, and new species and genera of host plants, pests and pathogens are being introduced constantly. This chapter notes the new or re-emerging insect, mite and disease problems that have been problematic in greenhouse ornamentals since the turn of the century. Public preference for ornamentals free from chemical residues is driving constant refinement of sustainable pest management methods. Production systems are unique for bedding plants, foliage plants, flowering potted plants, and cut flowers and foliage plants; these difference affect the key pests and diseases and IPDM approaches. The second section of the chapter covers tools and techniques for IPDM: monitoring, the systems approach, plant-based solutions; environmental solutions and control agents. A detailed thought process on how to manage western flower thrips is offered as an example of the integrated strategy needed to successfully manage a pest (and the viruses it vectors). Methods for extending information to growers are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins S, Hammond J, Gera A et al (2006) Biological and molecular characterization of a new carmovirus isolated from Angelonia. Phytopathology 96:460–467

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2010) Plantago asiatica mosaic virus on Lilium spp. Pest report – The Netherlands. Plant Protection Service of the Netherlands, Wageningen, pp 1–2

    Google Scholar 

  • APHIS-PPQ (2004) Minimum sanitation protocols, testing and sampling plan for off-shore production facilities. 2 November 2004. USDA-APHIS- PPQ, Pest Detection and Management Programs, Riverdale, MD

    Google Scholar 

  • Baker CA, Breman L, Jones L (2006) Alternanthera mosaic virus found in Scutellaria, Crossandra and Portulaca spp. in Florida. Plant Dis 90:833–833

    Google Scholar 

  • Bale JS, Van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Philos T Roy Soc B 363:761–776

    Article  CAS  Google Scholar 

  • Belanger RR, Bowen PA, Ehret DL et al. (1995) Soluble silicon: its role in crop and disease management of greenhouse crops. Plant Dis 79:329–336

    Article  Google Scholar 

  • Ben-Yakir D, Antignus Y, Offir Y et al (2013) Optical manipulations: an advance approach for reducing sucking insect pests. In: Ishaaya I, Palli S, Horowitz A (eds) Advanced technologies for managing insect pests. Springer, Dordrecht

    Google Scholar 

  • Berger L (2014) Canine detection of citrus canker may show HLB application promise. Citrograph Magazine 5(4):22–27. http://citrusresearch.org/wp-content/uploads/CRB-Citrograph-Mag-Fall2014-Final-Web.pdf

    Google Scholar 

  • Bocsanczy AM, Yuen JMF, Palmateer AJ et al (2014) Comparative genomics of Ralstonia solanacearum strain P781 that infects Mandevilla and Dipladenia plants. Phytopathology 104(Suppl. 3):S3.16

    Google Scholar 

  • Bonde M, Murphy CA, Bauchan GR et al (2015) Evidence for systemic infection by Puccinia horiana, causal agent of chrysanthemum white rust, in chrysanthemum. Phytopathology 105:91–98

    Article  CAS  PubMed  Google Scholar 

  • Bouagga S, Urbaneja A, Rambla JL et al (2018) Orius laevigatus strengthens its role as a biological control agent by inducing plant defenses. J Pest Sci 91:55–64

    Article  Google Scholar 

  • Brambila J, Stocks I (2010) The European pepper moth, Duponchelia fovealis Zeller (Lepidoptera:Crambidae), a Mediterranean pest moth discovered in central Florida. Florida Department of Agriculture and Consumer Services, Pest Alert DACS-P-01752. https://www.researchgate.net/profile/Ian_Stocks/publication/311534606_Pest_Alert_The_European_Pepper_Moth_Duponchelia_fovealis_Zeller_Lepidoptera_Crambidae_a_Mediterranean_Pest_Moth_Discovered_in_Central_Florida/links/584ac66308aecb6bd8bd05a7/Pest-Alert-The-European-Pepper-Moth-Duponchelia-fovealis-Zeller-Lepidoptera-Crambidae-a-Mediterranean-Pest-Moth-Discovered-in-Central-Florida.pdf

  • Bratsch S, Lockhart BEL, Mollov D (2017) Characterization of a new nepovirus causing a leaf mottling disease in Petunia hybrida. Plant Dis 101:1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Braun SE, Sanderson JP, Nelson EB et al (2009) Fungus gnat feeding and mechanical wounding inhibit Pythium aphanidermatum infection of geranium seedlings. Phytopathology 99:1421–1428

    Article  CAS  PubMed  Google Scholar 

  • Braun SE, Sanderson JP, Daughtrey ML et al (2012) Attraction and oviposition responses of the fungus gnat Bradysia impatiens to microbes and microbe-inoculated seedling in laboratory bioassays. Entomol Exp Appl. https://doi.org/10.1111/j.1570-7458.2012.01315.x

    Article  Google Scholar 

  • Brielmaier-Liebetanz U, Field AE, Warfield CY et al (2015) Powdery mildew (Erysiphaceae) on Calibrachoa hybrids in Germany, Nicaragua and the USA. Plant Pathol Quar 5:1–5

    Article  Google Scholar 

  • Buitenhuis R (2014) Systems approach : integrating IPM in the production system. Temperate Clim IOBC-WPRS Bull 102:37–43

    Google Scholar 

  • Buitenhuis R, Shipp JL (2006) Factors influencing the use of trap plants for the control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse potted chrysanthemum. Environ Entomol 35(5):1411–1416

    Article  Google Scholar 

  • Buitenhuis R, Shipp L, Jandricic S et al (2007) Effectiveness of insecticide-treated and non-treated trap plants for the management of Frankliniella occidentalis (Thysanoptera: Thripidae) in greenhouse ornamentals. Pest Manag Sci 63(9):910–917

    Article  CAS  PubMed  Google Scholar 

  • Buitenhuis R, Glemser E, Brommit A (2014) Practical placement improves the performance of slow release sachets of Neoseiulus cucumeris. Biocontrol Sci Tech 24(10):1153–1166. https://doi.org/10.1080/09583157.2014.930726

    Article  Google Scholar 

  • Buitenhuis R, Murphy G, Shipp L et al (2015) Amblyseius swirskii in greenhouse production systems: a floricultural perspective. Exp Appl Acarol 65:451–464

    Article  PubMed  Google Scholar 

  • Buitenhuis R, Brownbridge M, Brommit A, Saito T, Murphy G (2016) How to start with a clean crop: biopesticide dips reduce populations of Bemisia tabaci (Hemiptera: Aleyrodidae) on greenhouse poinsettia propagative cuttings. Insects 7(4):48

    Article  PubMed Central  Google Scholar 

  • Busby PE, Soman C, Wagner MR et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15(3):1–14

    Article  CAS  Google Scholar 

  • CABI (2017) Thrips palmi (melon thrips). https://www.cabi.org/isc/datasheet/53745

  • California Department of Food and Agriculture (2018) Light brown apple moth pest profile. https://www.cdfa.ca.gov/plant/pdep/target_pest_disease_profiles/LBAM_PestProfile.html

  • Celio G, Hausbeck M (1998) Conidial germination, infection structure formation, and early colony development of powdery mildew on poinsettia. Phytopathology 88:105–113

    Article  CAS  PubMed  Google Scholar 

  • Chau A, Heinz KM (2006) Manipulating fertilization: a management tactic against Frankliniella occidentalis on potted chrysanthemum. Entomol Exp Appl 120(3):201–209

    Article  Google Scholar 

  • Chau A, Heinz KM, Davies FT (2005) Influences of fertilization on Aphis gossypii and insecticide usage. J Appl Entomol 129:89–97

    Article  CAS  Google Scholar 

  • Chase AR, Daughtrey ML, Cloyd RA (2018) Compendium of bedding plant diseases and pests. American Phytopathological Society, St. Paul, p 170

    Google Scholar 

  • Chen J, Henny RJ (2006) Ornamental foliage plants: improvement through biotechnology, Chapter 9 In: Recent advances in plant biotechnology and its applications

    Google Scholar 

  • Chen CC, Chen TC, Lin YH et al (2005a) A chlorotic spot disease on calla lilies (Zantedeschia spp.) is caused by a tospovirus serologically but distantly related to watermelon silver mottle virus. Plant Dis 89:440–445

    Article  CAS  PubMed  Google Scholar 

  • Chen J, McConnell D, Henny RJ et al (2005b) The foliage plant industry. Chapter 2 In: Janick J (ed) The foliage plant industry. Horticultural Reviews, vol 31, pp 45–110

    Chapter  Google Scholar 

  • Chow A et al (2012) Reducing fertilization: a management tactic against western flower thrips on roses. J Appl Entomol 136(7):520–529

    Article  Google Scholar 

  • Cloyd R, Dickinson A, Larson RA et al (2007) Effect of growing media and their constituents on fungus gnat, Bradysia sp. nr. Coprophila (Lintner) adults. Insect Sci 14:467–475. https://doi.org/10.1111/j.1744-7917.2007.00175.x

    Article  CAS  Google Scholar 

  • Conijn CGM (1992) Hot water treatment and cold storage to control the bulb mite Rhizoglyphus robini on lily bulbs. VI Int Symp Flower Bulbs 325:797–808

    Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  CAS  PubMed  Google Scholar 

  • Copes WE (2017) Sanitation for management of florists’ crops diseases. In: McGovern RJ, Elmer WH (eds) Handbook of florist’s crop diseases, handbook of plant disease management. https://doi.org/10.1007/978-3-319-32374-9_9-1

    Google Scholar 

  • Cotter SC et al (2011) Macronutrient balance mediates trade-offs between immune function and life history traits. Funct Ecol 25:186–198

    Article  Google Scholar 

  • Cuthbertson AGS, Blackburn LF, Eyre DP et al (2011) Bemisia tabaci: the current situation in the UK and the prospect of developing strategies for eradication using entomopathogens. Insect Sci 18:1–10

    Article  Google Scholar 

  • Datnoff LE, Elmer, WH (2017) Mineral nutrition and florists’ crops diseases. In: McGovern RJ, Elmer WH (eds) Handbook of florist’s crop diseases, handbook of plant disease management, https://doi.org/10.1007/978-3-319-32374-9_10-1

    Google Scholar 

  • Daughtrey M (2012) Impatiens downy mildew rocks the bedding plant industry. IR-4 Newsletter 43:9–11. http://ir4.rutgers.edu/Newsletter/vol43no4qxp.pdf

  • Daughtrey M (2014) What turned the bedding plant industry topsy-turvy: impatiens downy mildew. In: Palmer C (ed) Proceedings, 30th annual pest and production management conference. Society of American Florists. San Diego, CA. February 22, 2014, pp 1–11

    Google Scholar 

  • Daughtrey ML, Benson DM (2005) Principles of plant health management for ornamental plants. Annu Rev Phytopathol 43:141–169

    Article  CAS  PubMed  Google Scholar 

  • Daughtrey M, Tobiasz M (2008) Comparison of verbena cultivars for susceptibility to powdery mildew, 2007. PDMR 2:OT013

    Google Scholar 

  • Daughtrey ML, Holcomb GE, Eshenaur B, Palm ME, Belbahri L, Lefort F (2006) First report of downy mildew on greenhouse and landscape coleus caused by a Peronospora sp. in Louisiana and New York. Plant Dis 90:1111

    Article  CAS  PubMed  Google Scholar 

  • Daughtrey M, Harlan, B, Linderman, S et al (2014) Coleus cultivars and downy mildew. Special Research Report #136, American Floral Endowment. http://endowment.org/wp-content/uploads/2013/03/136-ColeusDM-Cv-2014.pdf

  • Daughtrey ML, Chase AR (2016) Diseases of poinsettia. In: McGovern R, Elmer WH (eds) Handbook of florists’ crops diseases. Handbook of Plant Disease Management, Springer Cham. https://doi.org/10.1007/978-3-319-32374-9_39-1

    Google Scholar 

  • Deng Z (2017) Breeding for disease resistance in florists’ crops. In: McGovern RJ, Elmer WH (eds) Plant disease handbook. Springer, pp 1–31. https://link.springer.com/referenceworkentry/10.1007/978-3-319-32374-9_4-1

  • Dennehy TJ, Degain BA, Harpold VS et al (2005) New challenges to management of whitefly resistance to insecticides in Arizona. The University of Arizona College of Agriculture and Life Sciences 2005 Vegetable Report. http://www.ag.arizona.edu/pubs/crops/az1382/az1382_2.pdf

  • Dickey AM, Kumar V, Hoddle MS et al (2015) The Scirtothrips dorsalis species complex: endemism and invasion in a global pest. PLoS One 10:e0123747. https://doi.org/10.1371/journal.pone.0123747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte LML, Toscano AN, Alexandre MAV, Rivas EB and Harakava R (2008) Identificacao e controle do Alternanthera mosaic virus isolado de Torenia sp. (Scrophulariaceae). Revista Brasileina de Horticultura Ornamental 14(1):59–66

    Google Scholar 

  • El-Hamalawi ZA (2008a) Acquisition, retention and dispersal of soilborne plant pathogenic fungi by fungus gnats and moth flies. Ann Appl Biol 153:195–203

    Google Scholar 

  • El-Hamalawi ZA (2008b) Attraction, acquisition, retention and spatiotemporal distribution of soilborne plant pathogenic fungi by shore flies. Ann Appl Biol 152:169–177

    Article  Google Scholar 

  • El-Hamalawi ZA, Stanghellini ME (2005) Disease development on Lisianthus following aerial transmission of fusarium avenaceum by adult shore flies, fungus gnats, and moth flies. Plant Dis 89:619–623

    Article  CAS  PubMed  Google Scholar 

  • Enzenbacker T, Naegele P, Hausbeck MK (2015) Susceptibility of greenhouse ornamentals to Phytophthora capsici and P. tropicalis. Plant Dis 99:1808–1815

    Article  Google Scholar 

  • Eshenaur BC, Jarlfors VE, Kelly KA, O’Mara J (1995) Detection of a virus infecting portulaca hybrids in Kentucky and Kansas greenhouses. (Abstr.). Phytopathology 85:1171

    Google Scholar 

  • Faust, JE., Dole, JM, Lopez, RG (2017) The floriculture vegetative cutting industry. Chapter 3 in Horticultural reviews, Volume 44, First Edition. Janick J (ed) Wiley-Blackwell

    Google Scholar 

  • Favrin RJ, Rahe JE, Mauza B (1988) Pythium spp. associated with crown rot of cucumbers in British Columbia greenhouses. Plant Dis 72:683–687

    Article  Google Scholar 

  • FNGLA (Florida Nursery, Growers and Landscape Association) (2018). https://www.fngla.org/about/

  • Frewin AJ, Scott-Dupree C, Murphy G et al (2014) Demographic trends in mixed Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species populations in commercial poinsettia under biological control- and insecticide-based management. J Econ Entomol 107:1150–1155

    Article  PubMed  Google Scholar 

  • Garibaldi A, Minuto A, Bertetti D et al (2004) Fusarium wilt of gerbera in soil and soilless crops in Italy. Plant Dis 88(3):311. https://doi.org/10.1094/PDIS.2004.88.3.311C

    Article  CAS  PubMed  Google Scholar 

  • Gerlacher WWP, Shubert R (2001) A new wilt of cyclamen caused by Phytophthora tropicalis in Germany and the Netherlands. Plant Dis 85:334

    Article  Google Scholar 

  • Gillespie DR, Vernon RS (2014) Trap catch of Western flower thrips (Thysanoptera: Thripidae) as affected by color and height of sticky traps in mature greenhouse cucumber crops. J Econ Entomol 83(3):971–975

    Article  Google Scholar 

  • Gladstone LA, Moorman GW (1989) Pythium root rot of seedling geraniums with various concentrations of nitrogen, phosphorous and sodium chloride. Plant Dis 73:733–736

    Article  Google Scholar 

  • Goldberg NP, Stanghellini ME (1990) Ingestion-egestion and aerial transmission of Pythium aphanidermatum by shore flies (Ephydrinae: Scatella stagnalis). Phytopathology 80:1244–1246

    Article  Google Scholar 

  • Graham JH, Timmer NH (1991) Peat-based media as a source of Thielaviopsis basicola causing black root rot on citrus seedlings. Plant Dis 75:1246–1249

    Article  Google Scholar 

  • Gullino ML, Garibaldi A (2017) Environment modification for disease management. In: McGovern RJ, Elmer WH (eds) Handbook of florist’s crop diseases, handbook of plant disease management. https://doi.org/10.1007/978-3-319-32374-9_5-1

    Google Scholar 

  • Gullino ML, Wardlow LR (1999) Ornamentals. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Developments in plant pathology, vol 14. Springer, Dordrecht

    Google Scholar 

  • Hagan AK (2009) Reaction of zinnia selections to bacterial leaf spot, 2007. PDMR 3:OT016

    Google Scholar 

  • Hara AH, Jacobsen CM (2005) Hot water immersion for surface disinfestation of Maconellicoccus hirsutus (Homoptera: Pseudococcidae). J Econ Entomol 98(2):284–288

    Article  PubMed  Google Scholar 

  • Harlan BR, Granke L, Hausbeck MK (2017) Epidemiology and management of impatiens downy mildew in the United States. Acta Hortic 1170:1051–1056

    Article  Google Scholar 

  • Harris MA (1995) Dissemination of the phytopathogen Thielaviopsis basicola by the fungus gnat Bradysia coprophila and biological control of these pests by Fusarium proliferatum and steinernematid nematodes. Doctoral dissertation, University of Georgia, Athens

    Google Scholar 

  • Harris MA, Oetting RD, Gardner WA (1995) Use of Entomopathogenic nematodes and a new monitoring technique for control of fungus gnats, Bradysia coprophila (Diptera: Sciaridae), in floriculture. Biol Control 5:412–418

    Article  Google Scholar 

  • Hausbeck MK, Harlan BR (2012) Evaluation of new fungicide products for control of botrytis on poinsettia, 2011. PDMR 6:OT007

    Google Scholar 

  • Hausbeck MK, Courtney SE, Harlan BR (2016) Evaluation of a biopesticide for the control of Rhizoctonia root rot of zinnia, 2016. PDMR 10:OT004

    Google Scholar 

  • Hausbeck MK, Harlan BR, Courtney SE (2017) Evaluation of experimental fungicides and biopesticides againt botrytis blight on poinsettia, 2016. PDMR 11:OT030

    Google Scholar 

  • Hewitt LC, Shipp L, Buitenhuis R et al (2015) Seasonal climatic variations influence the efficacy of predatory mites used for control of flower thrips in greenhouse ornamental crops. Exp Appl Acarol 65(4):435–450

    Article  PubMed  Google Scholar 

  • Hogendorp BK, Cloyd RA, Swiader JM (2009) Effect of silicon-based fertilizer applications on the reproduction and development of the citrus mealybug (Hemiptera: Pseudococcidae) feeding on green coleus. J Econ Entomol 102(6):2198–2208

    Article  CAS  PubMed  Google Scholar 

  • Holcomb GE, Owings AD, Broyles CA (2007) Reaction of zinnia cultivars to bacterial leaf spot, 2006. PDMR 1:OT006

    Google Scholar 

  • Holden MH, Ellner SP, Lee DH et al (2012) Designing an effective trap cropping strategy: the effects of attraction, retention and plant spatial distribution. J Appl Ecol 49(3):715–722

    Google Scholar 

  • Hong C, Richardson PA, Kong P (2008) Pathogenicity to ornamental plants of some existing species and new taxa of Phytophthora from irrigation water. Plant Dis 92:1201

    Article  PubMed  Google Scholar 

  • Huang N, Enkegaard A, Osborne LS et al (2011) The banker plant method in biological control. Crit Rev Plant Sci 30(3):259–278

    Article  Google Scholar 

  • Ingerslew KS, Finke DL (2017) Mechanisms underlying the nonconsumptive effects of parasitoid wasps on aphids. Environ Entomol 46(1):75–83

    CAS  PubMed  Google Scholar 

  • IRAC. http://www.irac-online.org/pests/

  • Jandricic SE (2017) Potential for A. limonicus to control whitefly in greenhouse ornamental crops under cool weather conditions: preliminary tests in a commercial greenhouse. IOBC-WPRS Bulletin 124:119–124

    Google Scholar 

  • Jandricic S, Sanderson, J (2010) Outfoxing the foxglove aphid. GrowerTalks. https://www.growertalks.com/Article/?articleid=22606

  • Jandricic SE, Wraight SP, Bennett KC et al (2010) Developmental times and life table statistics of Aulacorthum solani (Hemiptera: Aphididae) at six constant temperatures, with recommendations on the application of temperature-dependent development models. Environ Entomol 39(5):1631–1642

    Article  CAS  PubMed  Google Scholar 

  • Jandricic SE, Schmidt D, Bryant G et al (2016) Non-consumptive predator effects on a primary greenhouse pest: predatory mite harassment reduces western flower thrips abundance and plant damage. Biol Control 95:5–12

    Article  Google Scholar 

  • Kalb DW, Millar RL (1986) Dispersal of Verticillium albo-atrum by the fungus gnats (Bradysia impatiens). Plant Dis 70:752–753

    Article  Google Scholar 

  • Karthikeyan M, Bhaskaran R, Mathiyazhagan S et al (2007) Influence of phylloplane colonizing biocontrol agents on the black spot of rose caused by Diplocarpon rosae. J Plant Interact 2(4):225–231. https://doi.org/10.1080/17429140701701071

    Article  CAS  Google Scholar 

  • Keach JE, Bridgen MP (2015) Towards improvement of impatiens. Combined Proc Int Plant Propagators’ Soc 65:317–325

    Google Scholar 

  • Keach J, Daughtrey M, Bridgen M et al (2016) Susceptibility of Impatiens species to downy mildew caused y Plasmopara obducens. (Abstr.). Phytopathology 106:S2.1. https://doi.org/10.1094/PHYTO-106-4-S2.1

    Article  Google Scholar 

  • Kenneth RG (1981) Downy mildews of graminaceous crops. Chapter 18. In: Spencer DM (ed) The downy mildews. Academic, London. 636 pp

    Google Scholar 

  • Kim SH, Forer LB, Longenecker JL (1975) Recovery of plant pathogens from commercial peat products. Proc Am Phytopathol Soc 2:124

    Google Scholar 

  • Kirk WDJ. (2002) The pest and vector from the west: Frankliniella occidentalis. In: Thrips and Tospoviruses: proceedings of the 7th international symposium on Thysanoptera, vol 586, pp 1–10

    Google Scholar 

  • Kiss L, Jankovics T, Kovács GM et al (2008) Oidium longipes, a new powdery mildew fungus on petunia in the USA: a potential threat to ornamental and vegetable solanaceous crops. Plant Dis 92:818–825

    Article  CAS  PubMed  Google Scholar 

  • Kos SP, Klinkhamer PGL, Leiss KA (2014) Cross-resistance of chrysanthemum to western flower thrips, celery leafminer, and two-spotted spider mite. Entomol Exp Appl 151(3):198–208. https://doi.org/10.1111/eea.12185

    Article  Google Scholar 

  • Kraus J, Cleveland S, Putnam ML et al (2010) A new Potyvirus sp. infects verbena exhibiting leaf mottling symptoms. Plant Dis 94:1132–1136

    Article  PubMed  Google Scholar 

  • Lecomte C, Alabouvette C, Edel-Hermann V et al (2016) Biological control of ornamental crop diseases caused by fusarium oxysporum: a review. Biol Control 101:17–30

    Article  Google Scholar 

  • Lee DH, Nyrop JP, Sanderson JP (2009) Attraction of Trialeurodes vaporariorum and Bemisia argentifolii to eggplant, and its potential as a trap crop for whitefly management on greenhouse poinsettia. Entomol Exp Appl 133(2):105–116

    Article  Google Scholar 

  • Lewis WJ, van Lenteren JC, Phatak SC et al (1997) A total system approach to sustainable pest management. Proc Natl Acad Sci U S A 94(23):12243–12248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist RK, Faber WR, Casey ML (1985) Effect of various soilless root media and insecticides on fungus gnats. HortScience 20:358–360

    CAS  Google Scholar 

  • Liu Y (2011) Semi-commercial ultralow oxygen treatment for control of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on harvested iceberg lettuce. Postharvest Biol Technol 59:138–142

    Article  Google Scholar 

  • Liu H-Y, Sears JL, Morrison RH (2003) Isolation and characterization of a Carmo-like virus from Calibrachoa plants. Plant Dis 87:167–171

    Article  PubMed  Google Scholar 

  • Lockhart BEL, Daughtrey ML (2008) First report of Alternanthera mosaic virus infection in Angelonia in the United States. Plant Dis 92:1473. http://dx.doi.org/10.1094/PDIS-92-10-1473B

    Article  CAS  PubMed  Google Scholar 

  • Macdonald WN et al (2013) Review: improving nitrogen use efficiency of potted chrysanthemum: strategies and benefits. Can J Plant Sci 93:1009–1016

    Article  CAS  Google Scholar 

  • MacKenzie CL, Bethke JA, Byrne FJ et al (2012) Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in North America after the Q invasion. J Econ Entomol 105(3):753–766

    Article  CAS  Google Scholar 

  • Martinelli F, Scalenghe R, Davino S et al (2015) Advanced methods of plant disease detection. Rev Agron Sustain Dev 35(1):1–25. https://doi.org/10.1007/s13593-014-0246-1

    Article  Google Scholar 

  • Mattson NS, Leatherwood WR (2010) Potassium silicate drenches increase leaf silicon content and affect morphological traits of several floriculture crops grown in a peat-based substrate. HortScience 45(1):43–47

    Article  Google Scholar 

  • McGovern RJ, Elmer WH (2017) Florists’ crops: global trends and disease. In: McGovern RJ, Elmer WH (eds) Plant disease handbook. Springer. https://link.springer.com/referenceworkentry/10.1007/978-3-319-32374-9_16-1

  • McMurtry JA, Moraes GJ, De SNF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae). Syst Appl Acarol 18(4):297–320

    Google Scholar 

  • McNamara DG, Loebenstein G, Hammond J (1996) The preparation of international certification and classification schemes for ornamental crops. Acta Hortic 432:212–217

    Article  Google Scholar 

  • McSpadden Gardener BB, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Prog. https://doi.org/10.1094/PHP-2002-0510-01-RV

    Article  Google Scholar 

  • Messelink GJ, Sabelis MW, Janssen A (2012) Generalist predators, food web complexities and biological pest control in greenhouse crops. In: Integrated pest management and pest control – current and future tactics, pp 191–214

    Google Scholar 

  • Messelink GJ, Bennison J, Alomar O et al (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59(4):377–393

    Article  Google Scholar 

  • Minuto A, Gullino ML, Garibaldi A (2007) Gerbera jamesonii, Osteospermum sp. and Argyranthemum frutescens: new hosts of Fusarium oxysporum f. sp. chrysanthemi. J Phytopathol 155(6):373–376

    Article  Google Scholar 

  • Mollov DS, Hayslett MC, Eichstaedt KA et al (2007) Identification and characterization of a carlavirus causing veinal necrosis of coleus. Plant Dis 91(6):754–757. https://doi.org/10.1094/PDIS-91-6-0754

    Article  CAS  PubMed  Google Scholar 

  • Moorman GW (2000) Biology of Pythium root rot. AFE Special Research Report #103, American Floral Endowment. https://hortscans.ces.ncsu.edu/uploads/b/i/biology__582de5f097e86.pdf

  • Murphy GD (2002) Biological and integrated control in ornamentals in North America: successes and challenges. IOBC/WPRS Bull 25:197–201

    Google Scholar 

  • Naher M, Motohash K, Watanabe H et al (2011) Phytophthora chrysanthemi sp. nov., a new species causing root rot of chrysanthemum in Japan. Mycol Prog 10:21–31

    Article  Google Scholar 

  • Nakamura M, Ohzono M, Iwai H et al (2006) Anthracnose of Sansevieria trifasciata caused by Colletotrichum sansevieriae sp. nov. J Gen Plant Pathol 72:253–256

    Article  CAS  Google Scholar 

  • Nansen C (2016) The potential and prospects of proximal remote sensing of arthropod pests. Pest Manag Sci 72(4):653–659

    Article  CAS  PubMed  Google Scholar 

  • Naselli M, Urbaneja A, Siscaro G et al (2016) Stage-related defense response induction in tomato plants by Nesidiocoris tenuis. Int J Mol Sci 17(8):1210

    Article  PubMed Central  CAS  Google Scholar 

  • Orlikowski LB, Trzewik A, Wiejacha K et al (2006) Phytophthora tropicalis, a new pathogen of ornamental plants in Poland. J Plant Prot Res 46:103–109

    CAS  Google Scholar 

  • Osouli S, Ziaie F, Nejad KHI (2013) Application of gamma irradiation on eggs, active and quiescence stages of Tetranychus urticae Koch as a quarantine treatment of cut flowers. Radiat Phys Chem 90:111–119

    Article  CAS  Google Scholar 

  • Palmer CL, Vea E (2017) Fungicides and biocontrols for management of florists crop diseases. In: McGovern RJ, Elmer WH (eds) Handbook of florist’s crop diseases, handbook of plant disease management. https://doi.org/10.1007/978-3-319-32374-9_7-1

    Google Scholar 

  • Parrella MP, Costamagna T (2006) The addition of potassium silicate to the fertilizer mix to suppress Liriomyza leafminers attacking chrysanthemums. IOBC/WPRS Bull 29:159–162

    Google Scholar 

  • Pasura A, Elliott G (2007) Efficacy of microbial inoculants for control of blackleg disease of geranium in soilless potting mixes, 2006. PDMR 1:OT010

    Google Scholar 

  • Paulitz T, Belanger R (2002) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133

    Article  Google Scholar 

  • Pinto-Zevallos DM, Vänninen I (2013) Yellow sticky traps for decision-making in whitefly management: what has been achieved? Crop Prot 47:74–84

    Article  Google Scholar 

  • Povey S et al (2013) Dynamics of macronutrient self-medication and illness-induced anorexia in virally infected insects. J Anim Ecol 83:245–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Prado SG, Jandricic SE, Frank SD (2015) Ecological interactions affecting the efficacy of Aphidius colemani in greenhouse crops. Insects 6(2):538–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranger CM, Singh AP, Frantz JM et al (2009) Influence of silicon on resistance of Zinnia elegans to Myzus persicae (Hemiptera: Aphididae). Environ Entomol 38:129–136

    Article  CAS  PubMed  Google Scholar 

  • Reynolds OL, Padula MP, Zeng R et al (2016) Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front Plant Sci 7:744

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero W (2011). Development of reduced risk control strategies for western flower thrips and silverleaf whitefly associated with chrysanthemum and poinsettia cuttings. Thesis, University of Guelph

    Google Scholar 

  • Rosetta R (2014) Poinsettia thrips. Pacific Northwest Nursery IPM. Oregon State University. http://oregonstate.edu/dept/nurspest/poinsettia_thrips.htm

  • Rosskopf EN, Kokalis-Burelle N, Fennimore SA et al (2017) Soil/media disinfestation for management of florists’ crops diseases. In: McGovern RJ, Elmer WH (eds) Handbook of florist’s crop diseases, handbook of plant disease management. https://doi.org/10.1007/978-3-319-32374-9_7-1

    Google Scholar 

  • Salinas J, Glandorf DCM, Picavet ED et al (1989) Effects of temperature, relative humidity and age of conidia on the incidence of spotting on gerbera flowers caused by Botrytis cinerea. Neth J Plant Pathol 95:1–64

    Article  Google Scholar 

  • Salman M, Abuamsha R (2012) Potential for integrated biological and chemical control of damping-off disease caused by Pythium ultimum in tomato. BioControl 57:711–718

    Article  CAS  Google Scholar 

  • Sampson C, Kirk WDJ (2013) Can mass trapping reduce thrips damage and is it economically viable? Management of the western flower thrips in strawberry. PLoS One 8(11):e80787

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt RA (2014) Leaf structures affect predatory mites (Acari: Phytoseiidae) and biological control: a review. Exp Appl Acarol 62(1):1–17

    Article  PubMed  Google Scholar 

  • Scott-Brown AS, Hodgetts J, Hall J et al (2017) Potential role of botanic garden collections in predicting hosts at risk globally from invasive pests: a case study using Scirtothrips dorsalis. J Pest Sci:1–11. https://doi.org/10.1007/s10340-017-0916-2

    Article  Google Scholar 

  • Shelp BJ et al (2017) Optimizing supply and timing of nitrogen application for subirrigated potted chrysanthemums. Can J Plant Sci 97:17–19

    Google Scholar 

  • Shinoyama H, Mitsuhara I, Ichikawa H et al (2015) Transgeneic chrysanthemums (Chrysanthemum morifolium Ramat.) carrying both insect and disease resistance. Acta Hortic 1087:485–497

    Article  Google Scholar 

  • Shipp JL, Gillespie TJ (1993) Influence of temperature and water vapor pressure deficit on survival of Frankliniella occidentalis (Thysanoptera: Thripidae). Environ Entomol 22:726–732

    Article  Google Scholar 

  • Silagyi AJ, Dixon WN (2006) Assessment of chilli thrips, Scirtothrips dorsalis Hood, in Florida. Florida Cooperative Agricultural Pest Survey Program Report No. 2006–08-SDS-01. http://mrec.ifas.ufl.edu/lso/DOCUMENTS/S%20dorsalis%20write-up%2010-2-2006%20FINAL.pdf

  • Skinner M, Frank Sullivan CE, Gouli S et al (2013) Granular formulations of insect-killing fungi in combination with plant-mediated IPM systems for thrips. American Floral Endowment Special Research Report #216

    Google Scholar 

  • Skirvin D (2011) Chasing the dream: a systems modelling approach to biological control. Acta Hortic 916:129–140

    Article  Google Scholar 

  • Smith T (2015) Western flower thrips, management and tospoviruses. University of Massachusetts, Amherst. Online Fact Sheet. https://ag.umass.edu/greenhouse-floriculture/fact-sheets/western-flower-thrips-management-tospoviruses

    Google Scholar 

  • Sparks B (2017) Greenhouse grower online. http://www.greenhousegrower.com/production/naturefresh-farms-uses-pest-detecting-dog-to-sniff-out-pepper-weevil/

  • Spiers JD et al (2011) Fertilization affects constitutive and wound-induced chemical defenses in Gerbera jamesonii. J Environ Hortic 29(4):180–184

    CAS  Google Scholar 

  • Sulecki JC (2015) Survey snapshot shows biocontrols mainstreaming. Greenhouse Grower, April

    Google Scholar 

  • Summerfield A, Grygorczyk A, Buitenhuis. et al (2015) Now putting the bios in charge. Greenhouse Canada Magazine, August. https://www.greenhousecanada.com/inputs/biocontrols/now-putting-the-bios-in-charge-30555

  • Summerfield A (2019) Biocontrol thriving in Canadian floriculture greenhouses. Greenhouse Canada, March/April 28–30

    Google Scholar 

  • Swiecki TJ, MacDonald JD (1988) Histology of chrysanthemum roots exposed to salinity stress and Phytophthora cryptogea. Can J Bot 66(2):280–288. https://doi.org/10.1139/b88-046

    Article  Google Scholar 

  • Teitel M (2007) The effect of screened openings on greenhouse microclimate. Agric For Meteorol 143:159–175

    Article  Google Scholar 

  • Troisi M, Gullino ML, Garibaldi A (2009) Gerbera jamesonii, a new host of Fusarium oxysporum f. sp. tracheiphilum. J Phytopathol 158:8–14

    Article  CAS  Google Scholar 

  • Trolinger JC, McGovern RJ, Elmer WH et al (2017) Diseases of chrysanthemum In: McGovern RJ, Elmer WH (eds) Plant disease handbook. Springer. https://link.springer.com/referenceworkentry/10.1007/978-3-319-32374-9_16-1

    Google Scholar 

  • USDA National Agricultural Statistics Service. Floriculture Crops 2010 Summary, April 2011. http://usda.mannlib.cornell.edu/usda/nass/FlorCrop//2010s/2011/FlorCrop-04-21-2011_revision.pdf

  • USDA National Agricultural Statistics Service. Floriculture Crops 2015 Summary, April 2016. http://usda.mannlib.cornell.edu/usda/current/FlorCrop/FlorCrop-04-26-2016.pdf

  • van Lenteren JC, Bolckmans K, Köhl J et al (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63:39–59

    Article  Google Scholar 

  • van Rijswick C (2015) World Floriculture Map 2015. Rabobank Industry Note #475. Coöperatieve Centrale Raiffeisen-Boerenleenbank B.A. pp 1–4. https://www.rabobank.com/en/images/World_Floriculture_Map_2015_vanRijswick_Jan2015.pdf

  • VanDerMeij J, Warfield C (2011) Indexing for disease. Chapter 15. In: Nau J (ed) BallRedbook, vol 2. Ball Publishing, Chicago, pp 173–176

    Google Scholar 

  • Verbeek M et al (2004) Ophiovirus isolated from freesia with freesia leaf necrosis disease. 11th ISVDOP. Taichung, Taiwan

    Google Scholar 

  • Vierbergen G, Loomans AJ (2016) Thrips setosus (Thysanoptera: Thripidae), the Japanese flower thrips, in cultivation of hydrangea in the Netherlands. Entomologische Berichten 76(3):103–108

    Google Scholar 

  • Vierbergen G, Cean M, Szellér IH et al (2006) Spread of two thrips pests in Europe: Echinothrips americanus and Microcephalothrips abdominalis (Thysanoptera: Thripidae). Acta Phytopathol Entomol Hung 41:287–296. https://doi.org/10.1556/APhyt.41.2006.3-4.11

    Article  Google Scholar 

  • Volpin H, Elad Y (1991) Influence of calcium nutrition on susceptibility of rose flowers to botrytis blight. Phytopathology 81:1390–1394

    Article  CAS  Google Scholar 

  • Von Broembsen SL, Deacon JW (1997) Calcium interference with zoospore biology and infectivity of Phytophthora parasitica in nutrient irrigation solutions. Phytopathology 87:522–528

    Article  Google Scholar 

  • Voogt W (1992) The effects of Si application on roses in rockwood, pp 17–18. In: Annual report 1992 Glasshouse crops research station, Naaldwijk, The Netherlands

    Google Scholar 

  • Warfield CY (2012) Efficacy of cease, KleenGrow and standard fungicides for prevention of downy mildew, 2012. PDMR 6:OT029

    Google Scholar 

  • Warfield CY (2017) Impatiens downy mildew: guidelines for growers, v. 12. Ball Horticultural Co. https://www.ballseed.com/pdf/ImpatiensDownyMildewGrowerGuidelines.pdf

  • Wegulo SN, Koike ST, Vilchez M et al (2004) First report of downy mildew caused by Plasmopara obducens on impatiens in California. Plant Dis 88(8):90

    Article  Google Scholar 

  • Weibel J, Tran TM, Bocsanczy AM et al (2016) A Ralstonia solanacearum strain from Guatemala infects diverse flower crops, including new asymptomatic hosts Vinca and Sutera, and causes symptoms in geranium, mandevilla vine, and new host African daisy (Osteospermum ecklonis). Plant Health Prog 17:114–121

    Article  Google Scholar 

  • Wick RL, Dicklow MB (2002) Epipremnum, a new host for Phytophthora capsici. Plant Dis 86(9):1050

    Article  CAS  PubMed  Google Scholar 

  • Winter S, Hamacher A, Engelmann J, Lesemann D-E (2006) Angelonia flower mottle, a new disease of Angelonia angustifolia caused by a hitherto unknown carmovirus. Plant Pathol 55(6):820–820

    Article  Google Scholar 

  • Zheng Y et al (2004) Potted gerbera production in a subirrigation system using low-concentration nutrient solutions. HortScience 39(6):1283–1286

    Article  CAS  Google Scholar 

  • Zheng Y et al (2010) Optimum feeding nutrient solution concentration for greenhouse potted miniature rose production in a recirculating subirrigation system. HortScience 45(9):1378–1383

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margery Daughtrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daughtrey, M., Buitenhuis, R. (2020). Integrated Pest and Disease Management in Greenhouse Ornamentals. In: Gullino, M., Albajes, R., Nicot, P. (eds) Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-22304-5_22

Download citation

Publish with us

Policies and ethics