Skip to main content

A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science

  • Chapter
  • First Online:
Supervised and Unsupervised Learning for Data Science

Abstract

Machine learning is as growing as fast as concepts such as Big data and the field of data science in general. The purpose of the systematic review was to analyze scholarly articles that were published between 2015 and 2018 addressing or implementing supervised and unsupervised machine learning techniques in different problem-solving paradigms. Using the elements of PRISMA, the review process identified 84 scholarly articles that had been published in different journals. Of the 84 articles, 6 were published before 2015 despite their metadata indicating that they were published in 2015. The existence of the six articles in the final papers was attributed to errors in indexing. Nonetheless, from the reviewed papers, decision tree, support vector machine, and Naïve Bayes algorithms appeared to be the most cited, discussed, and implemented supervised learners. Conversely, k-means, hierarchical clustering, and principal component analysis also emerged as the commonly used unsupervised learners. The review also revealed other commonly used algorithms that include ensembles and reinforce learners, and future systematic reviews can focus on them because of the developments that machine learning and data science is undergoing at the moment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandhu, T. H. (2018). Machine learning and natural language processing—A review. International Journal of Advanced Research in Computer Science, 9(2), 582–584.

    Article  Google Scholar 

  2. Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16(6), 321–332.

    Article  Google Scholar 

  3. Alpaydın, E. (2014). Introduction to machine learning. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  4. Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.

    MathSciNet  MATH  Google Scholar 

  5. MathWorks. (2016). Applying supervised learning. Machine Learning with MATLAB.

    Google Scholar 

  6. Ng, A. (2012). 1. Supervised learning. Machine Learning, 1–30.

    Google Scholar 

  7. Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42, 177–196.

    Article  MATH  Google Scholar 

  8. Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. In Machine Learning Proceedings.

    Google Scholar 

  9. Marshland, S. (2015). Machine learning: An algorithm perspective. Boca Raton, FL: CRC Press.

    Google Scholar 

  10. Baharudin, B., Lee, L. H., & Khan, K. (2010). A review of machine learning algorithms for text-documents classification. Journal on Advance in Information Technology, 1(1), 4–20.

    Google Scholar 

  11. Praveena, M. (2017). A literature review on supervised machine learning algorithms and boosting process. International Journal of Computer Applications, 169(8), 975–8887.

    Article  MathSciNet  Google Scholar 

  12. Qazi, A., Raj, R. G., Hardaker, G., & Standing, C. (2017). A systematic literature review on opinion types and sentiment analysis techniques: Tasks and challenges. Internet Research, 27(3), 608–630.

    Article  Google Scholar 

  13. Hutton, B., et al. (2015). The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Annals of Internal Medicine, 163(7), 566–567.

    Article  Google Scholar 

  14. Zorzela, L., Loke, Y. K., Ioannidis, J. P., Golder, S., Santaguida, P., Altman, D. G., et al. (2016). PRISMA harms checklist: Improving harms reporting in systematic reviews. BMJ (Online), 352, i157.

    Google Scholar 

  15. Shamseer, L., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ (Online), 349, g7647.

    Google Scholar 

  16. Moher, D., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, 1.

    Article  Google Scholar 

  17. Stroup, D. F., et al. (2000). Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA, 283(15), 2008–2012.

    Article  Google Scholar 

  18. Bloch, M. H., Landeros-Weisenberger, A., Rosario, M. C., Pittenger, C., & Leckman, J. F. (2008). Meta-analysis of the symptom structure of obsessive-compulsive disorder. The American Journal of Psychiatry, 165(12), 1532–1542.

    Article  Google Scholar 

  19. Fujimoto, M. S., Suvorov, A., Jensen, N. O., Clement, M. J., & Bybee, S. M. (2016). Detecting false positive sequence homology: A machine learning approach. BMC Bioinformatics, 17, 101.

    Article  Google Scholar 

  20. Mani, S., et al. (2013). Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy. Journal of the American Medical Informatics Association, 20(4), 688–695.

    Article  Google Scholar 

  21. Kovačević, A., Dehghan, A., Filannino, M., Keane, J. A., & Nenadic, G. (2013). Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives. Journal of the American Medical Informatics Association, 20(5), 859–866.

    Article  Google Scholar 

  22. Klann, J. G., Anand, V., & Downs, S. M. (2013). Patient-tailored prioritization for a pediatric care decision support system through machine learning. Journal of the American Medical Informatics Association, 20(e2), e267–e274.

    Article  Google Scholar 

  23. Gultepe, E., Green, J. P., Nguyen, H., Adams, J., Albertson, T., & Tagkopoulos, I. (2014). From vital signs to clinical outcomes for patients with sepsis: A machine learning basis for a clinical decision support system. Journal of the American Medical Informatics Association, 21(2), 315–325.

    Article  Google Scholar 

  24. Mani, S., et al. (2014). Medical decision support using machine learning for early detection of late-onset neonatal sepsis. Journal of the American Medical Informatics Association, 21(2), 326–336.

    Article  MathSciNet  Google Scholar 

  25. Nguyen, D. H. M., & Patrick, J. D. (2014). Supervised machine learning and active learning in classification of radiology reports. Journal of the American Medical Informatics Association, 21(5), 893–901.

    Article  Google Scholar 

  26. Deo, R. C. (2015). Machine learning in medicine HHS public access. Circulation, 132(20), 1920–1930.

    Article  Google Scholar 

  27. Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. The Journal of Economic Perspectives, 31(2), 87–106.

    Article  Google Scholar 

  28. Wu, M.-J., et al. (2017). Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. NeuroImage, 145, 254–264.

    Article  Google Scholar 

  29. Oudah, M., & Henschel, A. (2018). Taxonomy-aware feature engineering for microbiome classification. BMC Bioinformatics, 19, 227.

    Article  Google Scholar 

  30. Palma, S. I. C. J., Traguedo, A. P., Porteira, A. R., Frias, M. J., Gamboa, H., & Roque, A. C. A. (2018). Machine learning for the meta-analyses of microbial pathogens’ volatile signatures. Scientific Reports, 8, 1–15.

    Article  Google Scholar 

  31. Jaspers, S., De Troyer, E., & Aerts, M. (2018). Machine learning techniques for the automation of literature reviews and systematic reviews in EFSA. EFSA Supporting Publications, 15(6), 1427E.

    Article  Google Scholar 

  32. Crawford, M., Khoshgoftaar, T. M., Prusa, J. D., Richter, A. N., & Al Najada, H. (2015). Survey of review spam detection using machine learning techniques. Journal of Big Data, 2(1), 1–24.

    Article  Google Scholar 

  33. Dinov, I. D. (2016). Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data. Gigascience, 5, 12.

    Article  Google Scholar 

  34. Dimou, A., Vahdati, S., Di Iorio, A., Lange, C., Verborgh, R., & Mannens, E. (2017). Challenges as enablers for high quality Linked Data: Insights from the Semantic Publishing Challenge. PeerJ Computer Science, 3, e105.

    Article  Google Scholar 

  35. Trilling, D., & Boumans, J. (2018). Automatische inhoudsanalyse van Nederlandstalige data. Tijdschrift voor Communicatiewetenschap, 46(1), 5–24.

    Google Scholar 

  36. Van Nieuwenburg, E. P. L., Liu, Y., & Huber, S. D. (2017). Learning phase transitions by confusion. Nature Physics, 13(5), 435–439.

    Article  Google Scholar 

  37. Hoyt, R., Linnville, S., Thaler, S., & Moore, J. (2016). Digital family history data mining with neural networks: A pilot study. Perspectives in Health Information Management, 13, 1c.

    Google Scholar 

  38. Dobson, J. E. (2015). Can an algorithm be disturbed? Machine learning, intrinsic criticism, and the digital humanities. College Literature, 42(4), 543–564.

    Article  Google Scholar 

  39. Downing, N. S., et al. (2017). Describing the performance of U.S. hospitals by applying big data analytics. PLoS One, 12(6), e0179603.

    Article  Google Scholar 

  40. Hoang, X. D., & Nguyen, Q. C. (2018). Botnet detection based on machine learning techniques using DNS query data. Future Internet, 10(5), 43.

    Article  Google Scholar 

  41. Kothari, U. C., & Momayez, M. (2018). Machine learning: A novel approach to predicting slope instabilities. International Journal of Geophysics, 2018, 9.

    Article  Google Scholar 

  42. Thompson, J. A., Tan, J., & Greene, C. S. (2016). Cross-platform normalization of microarray and RNA-seq data for machine learning applications. PeerJ, 4, e1621.

    Article  Google Scholar 

  43. Ahmed, M. U., & Mahmood, A. (2018). An empirical study of machine learning algorithms to predict students’ grades. Pakistan Journal of Science, 70(1), 91–96.

    Google Scholar 

  44. Carifio, J., Halverson, J., Krioukov, D., & Nelson, B. D. (2017). Machine learning in the string landscape. Journal of High Energy Physics, 2017(9), 1–36.

    Article  MathSciNet  MATH  Google Scholar 

  45. Choudhari, P., & Dhari, S. V. (2017). Sentiment analysis and machine learning based sentiment classification: A review. International Journal of Advanced Research in Computer Science, 8(3).

    Google Scholar 

  46. Lloyd, S., Garnerone, S., & Zanardi, P. (2016). Quantum algorithms for topological and geometric analysis of data. Nature Communications, 7, 10138.

    Article  Google Scholar 

  47. Pavithra, D., & Jayanthi, A. N. (2018). A study on machine learning algorithm in medical diagnosis. International Journal of Advanced Research in Computer Science, 9(4), 42–46.

    Article  Google Scholar 

  48. Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21), 2657–2664.

    Article  Google Scholar 

  49. Kaytan, M., & Aydilek, I. B. (2017). A review on machine learning tools. 2017 International Artificial Intelligence and Data Processing Symposium, 8(3), 1–4.

    Google Scholar 

  50. Lynch, C. M., van Berkel, V. H., & Frieboes, H. B. (2017). Application of unsupervised analysis techniques to lung cancer patient data. PLoS One, 12(9), e0184370.

    Article  Google Scholar 

  51. Beck, D., Pfaendtner, J., Carothers, J., & Subramanian, V. (2017). Data science for chemical engineers. Chemical Engineering Progress, 113(2), 21–26.

    Google Scholar 

  52. Heylman, C., Datta, R., Sobrino, A., George, S., & Gratton, E. (2015). Supervised machine learning for classification of the electrophysiological effects of chronotropic drugs on human induced pluripotent stem cell-derived cardiomyocytes. PLoS One, 10(12), e0144572.

    Article  Google Scholar 

  53. Torkzaban, B., et al. (2015). Machine learning based classification of microsatellite variation: An effective approach for Phylogeographic characterization of olive populations. PLoS One, 10(11), e0143465.

    Article  Google Scholar 

  54. Guo, Z., Shao, X., Xu, Y., Miyazaki, H., Ohira, W., & Shibasaki, R. (2016). Identification of village building via Google earth images and supervised machine learning methods. Remote Sensing, 8(4), 271.

    Article  Google Scholar 

  55. Xia, C., Fu, L., Liu, Z., Liu, H., Chen, L., & Liu, Y. (2018). Aquatic toxic analysis by monitoring fish behavior using computer vision: A recent progress. Journal of Toxicology, 2018, 11.

    Article  Google Scholar 

  56. Fuller, D., Buote, R., & Stanley, K. (2017). A glossary for big data in population and public health: Discussion and commentary on terminology and research methods. Journal of Epidemiology and Community Health, 71(11), 1113.

    Google Scholar 

  57. Gibson, D., & de Freitas, S. (2016). Exploratory analysis in learning analytics. Technology, Knowledge and Learning, 21(1), 5–19.

    Article  Google Scholar 

  58. Cuperlovic-Culf, M. (2018). Machine learning methods for analysis of metabolic data and metabolic pathway modeling. Metabolites, 8(1), 4.

    Article  Google Scholar 

  59. Tan, M. S., Chang, S.-W., Cheah, P. L., & Yap, H. J. (2018). Integrative machine learning analysis of multiple gene expression profiles in cervical cancer. PeerJ, 6, e5285.

    Article  Google Scholar 

  60. Meenakshi, K., Safa, M., Karthick, T., & Sivaranjani, N. (2017). A novel study of machine learning algorithms for classifying health care data. Research Journal of Pharmacy and Technology, 10(5), 1429–1432.

    Article  Google Scholar 

  61. Dey, A. (2016). Machine learning algorithms: A review. International Journal of Computer Science and Information Technology, 7(3), 1174–1179.

    Google Scholar 

  62. Zhao, C., Wang, S., & Li, D. (2016). Determining fuzzy membership for sentiment classification: A three-layer sentiment propagation model. PLoS One, 11(11), e0165560.

    Article  Google Scholar 

  63. Mossotto, E., Ashton, J. J., Coelho, T., Beattie, R. M., MacArthur, B. D., & Ennis, S. (2017). Classification of paediatric inflammatory bowel disease using machine learning. Scientific Reports, 7, 1–10.

    Article  Google Scholar 

  64. Lau, O., & Yohai, I. (2016). Using quantitative methods in industry. Political Science and Politics, 49(3), 524–526.

    Article  Google Scholar 

  65. Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing, 2016, 1–16.

    Article  Google Scholar 

  66. Parreco, J. P., Hidalgo, A. E., Badilla, A. D., Ilyas, O., & Rattan, R. (2018). Predicting central line-associated bloodstream infections and mortality using supervised machine learning. Journal of Critical Care, 45, 156–162.

    Article  Google Scholar 

  67. Wuest, T., Irgens, C., & Thoben, K.-D. (2016). Changing states of multistage process chains. Journal of Engineering, 2016, 1.

    Article  Google Scholar 

  68. Tarwani, N. (2017). Survey of cyberbulling detection on social media big-data. International Journal of Advanced Research in Computer Science, 8(5).

    Google Scholar 

  69. Martinelli, E., Mencattini, A., Daprati, E., & Di Natale, C. (2016). Strength is in numbers: Can concordant artificial listeners improve prediction of emotion from speech? PLoS One, 11(8), e0161752.

    Article  Google Scholar 

  70. Liu, N., & Zhao, J. (2016). Semi-supervised online multiple kernel learning algorithm for big data. TELKOMNIKA, 14(2), 638–646.

    Article  Google Scholar 

  71. Goh, K. L., & Singh, A. K. (2015). Comprehensive literature review on machine learning structures for Web spam classification. Procedia Computer Science, 70, 434–441.

    Article  Google Scholar 

  72. Mishra, C., & Gupta, D. L. (2017). Deep machine learning and neural networks: An overview. IAES International Journal of Artificial Intelligence, 6(2), 66–73.

    Article  Google Scholar 

  73. Yan, X., Bai, Y., Fang, S., & Luo, J. (2016). A kernel-free quadratic surface support vector machine for semi-supervised learning. The Journal of the Operational Research Society, 67(7), 1001–1011.

    Article  Google Scholar 

  74. Yared, R., & Abdulrazak, B. (2016). Ambient technology to assist elderly people in indoor risks. Computers, 5(4), 22.

    Article  Google Scholar 

  75. Osborne, J. D., et al. (2016). Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning. Journal of the American Medical Informatics Association, 83(5), 605–623.

    Google Scholar 

  76. Kolog, E. A., Montero, C. S., & Tukiainen, M. (2018). Development and evaluation of an automated e-counselling system for emotion and sentiment analysis. Electronic Journal of Information Systems Evaluation, 21(1), 1–19.

    Google Scholar 

  77. Rafiei, M. H., Khushefati, W. H., Demirboga, R., & Adeli, H. (2017). Supervised deep restricted Boltzmann machine for estimation of concrete. ACI Materials Journal, 114(2), 237–244.

    Article  Google Scholar 

  78. Almasre, M. A., & Al-Nuaim, H. (2017). Comparison of four SVM classifiers used with depth sensors to recognize Arabic sign language words. Computers, 6(2), 20.

    Article  Google Scholar 

  79. Hashem, K. (2018). The rise and fall of machine learning methods in biomedical research. F1000Research, 6, 2012.

    Article  Google Scholar 

  80. Torshin, I. Y., & Rudakov, K. V. (2015). On the theoretical basis of metric analysis of poorly formalized problems of recognition and classification. Pattern Recognition and Image Analysis, 25(4), 577–587.

    Article  Google Scholar 

  81. Petrelli, M., & Perugini, D. (2016). Solving petrological problems through machine learning: The study case of tectonic discrimination using geochemical and isotopic data. Contributions to Mineralogy and Petrology, 171(10), 1–15.

    Article  Google Scholar 

  82. Min-Joo, K., & Kang, J.-W. (2016). Intrusion detection system using deep neural network for in-vehicle network security. PLoS One, 11(6). https://doi.org/10.1371/journal.pone.0155781

    Article  Google Scholar 

  83. Alicante, A., Corazza, A., Isgrò, F., & Silvestri, S. (2016). Unsupervised entity and relation extraction from clinical records in Italian. Computers in Biology and Medicine, 72, 263–275.

    Article  Google Scholar 

  84. Shanmugasundaram, G., & Sankarikaarguzhali, G. (2017). An investigation on IoT healthcare analytics. International Journal of Information Engineering and Electronic Business, 9(2), 11.

    Article  Google Scholar 

  85. Huang, G., Song, S., Gupta, J. N. D., & Wu, C. (2014). Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, 44(12), 2405–2417.

    Article  Google Scholar 

  86. Rastogi, R., & Saigal, P. (2017). Tree-based localized fuzzy twin support vector clustering with square loss function. Applied Intelligence, 47(1), 96–113.

    Article  Google Scholar 

  87. Muscoloni, A., Thomas, J. M., Ciucci, S., Bianconi, G., & Cannistraci, C. V. (2017). Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nature Communications, 8, 1–19.

    Article  Google Scholar 

  88. Saeys, Y., Van Gassen, S., & Lambrecht, B. N. (2016). Computational flow cytometry: Helping to make sense of high-dimensional immunology data. Nature Reviews. Immunology, 16(7), 449–462.

    Article  Google Scholar 

  89. Gonzalez, A., Pierre, & Forsberg, F. (2017). Unsupervised machine learning: An investigation of clustering algorithms on a small dataset (pp. 1–39).

    Google Scholar 

  90. Necula, S.-C. (2017). Deep learning for distribution channels’ management. Informatica Economică, 21(4), 73–85.

    Article  Google Scholar 

  91. Munther, A., Razif, R., AbuAlhaj, M., Anbar, M., & Nizam, S. (2016). A preliminary performance evaluation of K-means, KNN and em unsupervised machine learning methods for network flow classification. International Journal of Electrical and Computer Engineering, 6(2), 778–784.

    Google Scholar 

  92. Alalousi, A., Razif, R., Abualhaj, M., Anbar, M., & Nizam, S. (2016). A preliminary performance evaluation of K-means, KNN and EM unsupervised machine learning methods for network flow classification. International Journal of Electrical and Computer Engineering, 6(2), 778–784.

    Google Scholar 

  93. Alanazi, H. O., Abdullah, A. H., & Qureshi, K. N. (2017). A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. Journal of Medical Systems, 41(4), 1–10.

    Article  Google Scholar 

  94. Almatarneh, S., & Gamallo, P. (2018). A lexicon based method to search for extreme opinions. PLoS One, 13(5), e0197816.

    Article  Google Scholar 

  95. Assem, H., Xu, L., Buda, T. S., & O’sullivan, D. (2016). Machine learning as a service for enabling Internet of things and people. Personal and Ubiquitous Computing, 20(6), 899–914.

    Article  Google Scholar 

  96. Azim, M. A., & Bhuiyan, M. H. (2018). Text to emotion extraction using supervised machine learning techniques. TELKOMNIKA, 16(3), 1394–1401.

    Article  Google Scholar 

  97. Sirbu, A. (2016). Dynamic machine learning for supervised and unsupervised classification ES. Machine Learning.

    Google Scholar 

  98. Wahyudin, I., Djatna, T., & Kusuma, W. A. (2016). Cluster analysis for SME risk analysis documents based on pillar K-means. TELKOMNIKA, 14(2), 674.

    Article  Google Scholar 

  99. Davis, S. E., Lasko, T. A., Chen, G., Siew, E. D., & Matheny, M. E. (2018). Calibration drift in regression and machine learning models for acute kidney injury. Journal of the American Medical Informatics Association, 24, 1052–1061.

    Article  Google Scholar 

  100. Wallace, B. C., Noel-Storr, A., Marshall, I. J., Cohen, A. M., Smalheiser, N. R., & Thomas, J. (2017). Identifying reports of randomized controlled trials (RCTs) via a hybrid machine learning and crowdsourcing approach. Journal of the American Medical Informatics Association, 24(6), 1165–1168.

    Article  Google Scholar 

  101. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195–202.

    Article  Google Scholar 

  102. Bisaso, K. R., Anguzu, G. T., Karungi, S. A., Kiragga, A., & Castelnuovo, B. (2017). A survey of machine learning applications in HIV clinical research and care. Computers in Biology and Medicine, 91, 366–371.

    Article  Google Scholar 

  103. Bauder, R., Khoshgoftaar, T. M., & Seliya, N. (2017). A survey on the state of healthcare upcoding fraud analysis and detection. Health Services and Outcomes Research Methodology, 17(1), 31–55.

    Article  Google Scholar 

  104. Bashiri, A., Ghazisaeedi, M., Safdari, R., Shahmoradi, L., & Ehtesham, H. (2017). Improving the prediction of survival in cancer patients by using machine learning techniques: Experience of gene expression data: A narrative review. Iranian Journal of Public Health, 46(2), 165–172.

    Google Scholar 

  105. Breckels, L. M., Mulvey, C. M., Lilley, K. S., & Gatto, L. (2018). A bioconductor workflow for processing and analysing spatial proteomics data. F1000Research, 5, 2926.

    Article  Google Scholar 

  106. Saad, S. M., et al. (2017). Pollutant recognition based on supervised machine learning for indoor air quality monitoring systems. Applied Sciences, 7(8), 823.

    Article  Google Scholar 

  107. Fiorini, L., Cavallo, F., Dario, P., Eavis, A., & Caleb-Solly, P. (2017). Unsupervised machine learning for developing personalised behaviour models using activity data. Sensors, 17(5), 1034.

    Article  Google Scholar 

  108. Bunn, J. K., Hu, J., & Hattrick-Simpers, J. R. (2016). Semi-supervised approach to phase identification from combinatorial sample diffraction patterns. JOM, 68(8), 2116–2125.

    Article  Google Scholar 

  109. Cárdenas-López, F. A., Lamata, L., Retamal, J. C., & Solano, E. (2018). Multiqubit and multilevel quantum reinforcement learning with quantum technologies. PLoS One, 13(7), e0200455.

    Article  Google Scholar 

  110. Chen, R., Niu, W., Zhang, X., Zhuo, Z., & Lv, F. (2017). An effective conversation-based botnet detection method. Mathematical Problems in Engineering, 2017, 4934082.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Alloghani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., Aljaaf, A.J. (2020). A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science. In: Berry, M., Mohamed, A., Yap, B. (eds) Supervised and Unsupervised Learning for Data Science . Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-22475-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22475-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22474-5

  • Online ISBN: 978-3-030-22475-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics