Skip to main content

Real-Time Egocentric Navigation Using 3D Sensing

  • Chapter
  • First Online:
Machine Vision and Navigation

Abstract

This chapter proposes a hierarchical navigation system combining the benefits of perception space local planning and allocentric global planning. Perception space permits computationally efficient 3D collision checking, enabling safe navigation in environments that do not meet the conditions assumed by traditional navigation systems based on planar laser scans. Contributions include approaches for scoring and collision checking trajectories in perception space. Benchmarking results show the advantages of perception space collision checking over popular alternatives in the context of real-time local planning. Simulated experiments with multiple robotic platforms in several environments demonstrate the importance of 3D collision checking and the utility of a mixed representation hierarchical navigation system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., et al. (2005). Principles of robot motion: Theory, algorithms, and implementation. Cambridge: MIT Press.

    MATH  Google Scholar 

  2. LaValle, S. (2006). Planning algorithms. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  3. Ivanov, M., Lindner, L., Sergiyenko, O., Rodríguez-Quiñonez, J. C., Flores-Fuentes, W., & Rivas-Lopez, M. (2019). Mobile robot path planning using continuous laser scanning (pp. 338–372). Hershey: IGI Global.

    Google Scholar 

  4. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968, July). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.

    Article  Google Scholar 

  5. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271. Available: http://dx.doi.org/10.1007/BF01386390

    Article  MathSciNet  MATH  Google Scholar 

  6. Stentz, A. T. (1994, May). Optimal and efficient path planning for partially-known environments. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ’94) (Vol. 4, pp. 3310–3317).

    Google Scholar 

  7. Koenig, S., & Likhachev, M. (2005, June). Fast replanning for navigation in unknown terrain. IEEE Transactions on Robotics, 21(3), 354–363.

    Article  Google Scholar 

  8. Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., & Thrun, S. (2008). Anytime search in dynamic graphs. Artificial Intelligence, 172(14), 1613–1643. Available: http://www.sciencedirect.com/science/article/pii/S000437020800060X

    Article  MathSciNet  MATH  Google Scholar 

  9. García, F. M., Kapadia, M., & Badler, N. I. (2014, May). Gpu-based dynamic search on adaptive resolution grids. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1631–1638).

    Google Scholar 

  10. Tsardoulias, E. G., Iliakopoulou, A., Kargakos, A., & Petrou, L. (2016, December). A review of global path planning methods for occupancy grid maps regardless of obstacle density. Journal of Intelligent & Robotic Systems, 84(1), 829–858.

    Article  Google Scholar 

  11. Takahashi, O., & Schilling, R. J. (1989, April). Motion planning in a plane using generalized Voronoi diagrams. IEEE Transactions on Robotics and Automation, 5(2), 143–150.

    Article  Google Scholar 

  12. Kavraki, L. E., Kolountzakis, M. N., & Latombe, J. (1998, February). Analysis of probabilistic roadmaps for path planning. IEEE Transactions on Robotics and Automation, 14(1), 166–171.

    Article  Google Scholar 

  13. Bohlin, R., & Kavraki, L. E. (2000, April). Path planning using lazy PRM. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065) (Vol. 1, pp. 521–528).

    Google Scholar 

  14. Belghith, K., Kabanza, F., Hartman, L., & Nkambou, R. (2006, May). Anytime dynamic path-planning with flexible probabilistic roadmaps. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006 (pp. 2372–2377).

    Google Scholar 

  15. van den Berg, J., Ferguson, D., & Kuffner, J. (2006, May). Anytime path planning and replanning in dynamic environments. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006 (pp. 2366–2371).

    Google Scholar 

  16. Frazzoli, E., Dahleh, M. A., & Feron, E. (2002). Real-time motion planning for agile autonomous vehicles. Journal of Guidance, Control, and Dynamics, 25(1), 116–129. http://arc.aiaa.org/doi/abs/10.2514/2.4856

    Article  Google Scholar 

  17. Kuffner, J. J., & LaValle, S. M. (2000, April). RRT-connect: An efficient approach to single-query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065) (Vol. 2, pp. 995–1001).

    Google Scholar 

  18. Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846–894. Available: http://ijr.sagepub.com/content/30/7/846.abstract

    Article  MATH  Google Scholar 

  19. Kuwata, Y., Fiore, G. A., Teo, J., Frazzoli, E., & How, J. P. (2008, September). Motion planning for urban driving using RRT. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1681–1686).

    Google Scholar 

  20. Ferguson, D., Kalra, N., & Stentz, A. (2006, May). Replanning with RRTs. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006 (pp. 1243–1248).

    Google Scholar 

  21. Zucker, M., Kuffner, J., & Branicky, M. (2007, April). Multipartite RRTs for rapid replanning in dynamic environments. In Proceedings 2007 IEEE International Conference on Robotics and Automation (pp. 1603–1609).

    Google Scholar 

  22. Bruce, J., & Veloso, M. (2002, September). Real-time randomized path planning for robot navigation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (Vol. 3, pp. 2383–2388).

    Google Scholar 

  23. Otte, M., & Frazzoli, E. (2015). RRT X: Real-time motion planning/replanning for environments with unpredictable obstacles (pp. 461–478). Cham: Springer International Publishing. Available: http://dx.doi.org/10.1007/978-3-319-16595-0_27

    Google Scholar 

  24. Pivtoraiko, M., & Kelly, A. (2011). Kinodynamic motion planning with state lattice motion primitives. In Proceedings of the IEEE International Conference on Intelligent Robotic and Systems.

    Google Scholar 

  25. Hauser, K., Bretl, T., Harada, K., & Latombe, J.-C. (2008). Using motion primitives in probabilistic sample-based planning for humanoid robots. In S. Akella, N. Amato, W. Huang, & B. Mishra (Eds.), Algorithmic foundation of robotics VII. Springer Tracts in Advanced Robotics (Vol. 47, pp. 507–522). Berlin: Springer.

    Google Scholar 

  26. Frazzoli, E., Dahleh, M., & Feron, E. (2005). Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Transactions on Robotics, 21(6), 1077–1091.

    Article  Google Scholar 

  27. Şucan, I. A., Moll, M., & Kavraki, L. (2012, December). The open motion planning library. IEEE Robotics & Automation Magazine, 19, 72–82. http://ompl.kavrakilab.org.

    Article  Google Scholar 

  28. Paranjape, A. A., Meier, K. C., Shi, X., Chung, S., & Hutchinson, S. (2013, November). Motion primitives and 3-d path planning for fast flight through a forest. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2940–2947).

    Google Scholar 

  29. Khatib, O. (1985, March). Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings. 1985 IEEE International Conference on Robotics and Automation (Vol. 2, pp. 500–505).

    Google Scholar 

  30. Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8(5), 501–518.

    Article  Google Scholar 

  31. Arslan, O., & Koditschek, D. (2016). Exact robot navigation using power diagrams. In IEEE International Conference on Robotics and Automation (pp. 1–8).

    Google Scholar 

  32. Hyun, N. P., Verriest, E. I., & Vela, P. A. (2015). Optimal obstacle avoidance trajectory generation using the root locus principle. In IEEE Conference on Decision and Control (pp. 626–631).

    Google Scholar 

  33. Sethian, J. (1999). Level sets methods and fast marching methods. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  34. Osher, S., & Fedkiw, R. (2003). Level set methods and dynamic implicit surfaces. Berlin: Springer.

    Book  MATH  Google Scholar 

  35. Kelly, M. (2017). An introduction to trajectory optimization: How to do your own direct collocation. SIAM Review, 59(4), 849–904.

    Article  MathSciNet  MATH  Google Scholar 

  36. Ross, I. M., & Karpenko, M. (2012). A review of pseudospectral optimal control: From theory to flight. Annual Reviews in Control, 36(2), 182–197.

    Article  Google Scholar 

  37. Andersson, J., Gillis, J., Horn, G., Rawlings, J., & Diehl, M. (2018, July). CasADi: A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation.

    Google Scholar 

  38. Deits, R., & Tedrake, R. (2015). Efficient mixed-integer planning for UAVs in cluttered environments. In IEEE International Conference on Robotics and Automation (pp. 42–49).

    Google Scholar 

  39. Hyun, N., Vela, P., & Verriest, E. (2017). A new framework for optimal path planning of rectangular robots using a weighted l p norm. IEEE Robotics and Automation Letters, 2(3), 1460–1465.

    Article  Google Scholar 

  40. Mukadam, M., Dong, J., Yan, X., Dellaert, F., & Boots, B. (2018). Continuous-time Gaussian process motion planning via probabilistic inference. The International Journal of Robotics Research, 37(11), 1319–1340.

    Article  Google Scholar 

  41. Pham, Q. (2014). A general, fast, and robust implementation of the time-optimal path parameterization algorithm. IEEE Transactions on Robotics, 30(6), 1533–1540.

    Article  Google Scholar 

  42. Schulman, J., Ho, J., Lee, A. X., Awwal, I., Bradlow, H., & Abbeel, P. (2013). Finding locally optimal, collision-free trajectories with sequential convex optimization. In Robotics: Science and Systems, 9(1), 1–10 (Citeseer).

    Google Scholar 

  43. Borenstein, J., & Koren, Y. (1989, September). Real-time obstacle avoidance for fast mobile robots. IEEE Transactions on Systems, Man, and Cybernetics, 19(5), 1179–1187.

    Article  Google Scholar 

  44. Borenstein, J., & Koren, Y. (1991, June). The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation, 7(3), 278–288.

    Article  Google Scholar 

  45. Ulrich, I., & Borenstein, J. (2000, April). Vfh/sup */: Local obstacle avoidance with look-ahead verification. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065) (Vol. 3, pp. 2505–2511).

    Google Scholar 

  46. Nepal, K., Fine, A., Imam, N., Pietrocola, D., Robertson, N., & Ahlgren, D. J. (2009). Combining a modified vector field histogram algorithm and real-time image processing for unknown environment navigation. In Intelligent Robots and Computer Vision XXVI: Algorithms and Techniques (Vol. 7252, p. 72520G). Bellingham: International Society for Optics and Photonics.

    Google Scholar 

  47. An, D., & Wang, H. (2004, June). VPH: A new laser radar based obstacle avoidance method for intelligent mobile robots. In Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No. 04EX788) (Vol. 5, pp. 4681–4685).

    Google Scholar 

  48. Gong, J., Duan, Y., Man, Y., & Xiong, G. (2007, August). VPH+: An enhanced vector polar histogram method for mobile robot obstacle avoidance. In 2007 International Conference on Mechatronics and Automation (pp. 2784–2788).

    Google Scholar 

  49. Minguez, J., & Montano, L. (2000, October). Nearness diagram navigation (ND): A new real time collision avoidance approach. In Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No. 00CH37113) (Vol. 3, pp. 2094–2100).

    Google Scholar 

  50. Minguez, J., & Montano, L. (2004, February). Nearness diagram (ND) navigation: Collision avoidance in troublesome scenarios. IEEE Transactions on Robotics and Automation, 20(1), 45–59.

    Article  Google Scholar 

  51. Durham, J. W., & Bullo, F. (2008, September). Smooth nearness-diagram navigation. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 690–695).

    Google Scholar 

  52. Minguez, J., Montano, L., Simeon, T., & Alami, R. (2001, May). Global nearness diagram navigation (GND). In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164) (Vol. 1, pp. 33–39).

    Google Scholar 

  53. Mujahad, M., Fischer, D., Mertsching, B., & Jaddu, H. (2010, October). Closest Gap based (CG) reactive obstacle avoidance Navigation for highly cluttered environments. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1805–1812).

    Google Scholar 

  54. Mujahed, M., Fischer, D., & Mertsching, B. (2013, September). Safe Gap based (SG) reactive navigation for mobile robots. In 2013 European Conference on Mobile Robots (ECMR) (pp. 325–330).

    Google Scholar 

  55. Sezer, V., & Gokasan, M. (2012). A novel obstacle avoidance algorithm: “Follow the Gap Method”. Robotics and Autonomous Systems, 60(9), 1123–1134. Available: http://www.sciencedirect.com/science/article/pii/S0921889012000838

    Article  Google Scholar 

  56. Mujahed, M., & Mertsching, B. (2017, May). The admissible gap (AG) method for reactive collision avoidance. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1916–1921).

    Google Scholar 

  57. Bauer, R., Feiten, W., & Lawitzky, G. (1994). Steer angle fields: An approach to robust manoeuvring in cluttered, unknown environments. Robotics and Autonomous Systems, 12(3), 209–212.

    Article  Google Scholar 

  58. Feiten, W., Bauer, R., & Lawitzky, G. (1994, May). Robust obstacle avoidance in unknown and cramped environments. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation (Vol.3, pp. 2412–2417).

    Google Scholar 

  59. Buhmann, J., Burgard, W., Cremers, A., Fox, D., Hofmann, T., Schneider, F., et al. (1995). The Mobile Robot RHINO. AI Magazine, 16(1), 31–38.

    Google Scholar 

  60. Fox, D., Burgard, W., & Thrun, S. (1997, March). The dynamic window approach to collision avoidance. IEEE Robotics Automation Magazine, 4(1), 23–33.

    Article  Google Scholar 

  61. Stachniss, C., & Burgard, W. (2002). An integrated approach to goal-directed obstacle avoidance under dynamic constraints for dynamic environments. In IEEE/RSJ International Conference on Intelligent Robots and Systems (Vol. 1, pp. 508–513).

    Google Scholar 

  62. Brock, O., & Khatib, O. (1999). High-speed navigation using the global dynamic window approach. In Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C) (Vol. 1, pp. 341–346).

    Google Scholar 

  63. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., & Konolige, K. (2010). The Office Marathon: Robust navigation in an indoor office environment. In IEEE International Conference on Robotics and Automation (pp. 300–307).

    Google Scholar 

  64. Simmons, R. (1996, April). The curvature-velocity method for local obstacle avoidance. In Proceedings of IEEE International Conference on Robotics and Automation (Vol. 4, pp. 3375–3382).

    Google Scholar 

  65. Ko, N. Y., & Simmons, R. (1998, October). The lane-curvature method for local obstacle avoidance. In Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No. 98CH36190) (Vol. 3, pp. 1615–1621).

    Google Scholar 

  66. Quinlan, S., & Khatib, O. (1993, May). Elastic bands: Connecting path planning and control. In [1993] Proceedings IEEE International Conference on Robotics and Automation (Vol. 2, pp. 802–807).

    Google Scholar 

  67. Khatib, M. (1996). Sensor-based motion control for mobile robots. Toulouse: LAAS-CNRS.

    Google Scholar 

  68. Roesmann, C., Feiten, W., Woesch, T., Hoffmann, F., & Bertram, T. (2012, May). Trajectory modification considering dynamic constraints of autonomous robots. In ROBOTIK 2012; 7th German Conference on Robotics (pp. 1–6).

    Google Scholar 

  69. Rösmann, C., Hoffmann, F., & Bertram, T. (2017). Integrated online trajectory planning and optimization in distinctive topologies. Robotics and Autonomous Systems, 88, 142–153. http://www.sciencedirect.com/science/article/pii/S0921889016300495.

    Article  Google Scholar 

  70. Lindner, L., Sergiyenko, O., Rivas-López, M., Hernández-Balbuena, D., Flores-Fuentes, W., Rodríguez-Quiñonez, J. C., et al. (2017). Exact laser beam positioning for measurement of vegetation vitality. Industrial Robot: The International Journal of Robotics Research and Application, 44(4), 532–541.

    Article  Google Scholar 

  71. Sergiyenko, O., Ivanov, M., Tyrsa, V., Kartashov, V., Rivas-López, M., Hernández-Balbuena, D., et al. (2016). Data transferring model determination in robotic group. Robotics and Autonomous Systems, 83, 251–260.

    Article  Google Scholar 

  72. Ivanov, M., Sergiyenko, O., Tyrsa, V., Mercorelli, P., Kartashov, V., Perdomo, W., et al. (2018, October). Individual scans fusion in virtual knowledge base for navigation of mobile robotic group with 3D TVS. In IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society (pp. 3187–3192).

    Google Scholar 

  73. Maier, D., Hornung, A., & Bennewitz, M. (2012, November). Real-time navigation in 3D environments based on depth camera data. In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012) (pp. 692–697).

    Google Scholar 

  74. Murray, D., & Jennings, C. (1997, May). Stereo vision based mapping and navigation for mobile robots. In IEEE International Conference on Robotics Automation (Vol. 2, pp. 1694–1699).

    Google Scholar 

  75. Biswas, J., & Veloso, M. (2012, May). Depth camera based indoor mobile robot localization and navigation. In 2012 IEEE International Conference on Robotics and Automation (pp. 1697–1702).

    Google Scholar 

  76. Barry, A. J., Florence, P. R., & Tedrake, R. (2017). High-speed autonomous obstacle avoidance with pushbroom stereo. Journal of Field Robotics, 35(1), 52–68. https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21741.

    Article  Google Scholar 

  77. Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., & Burgard, W. (2010). OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems. In Proceedings of the ICRA 2010 workshop.

    Google Scholar 

  78. Schmid, K., Tomic, T., Ruess, F., Hirschmuller, H., & Suppa, M. (2013). Stereo vision based indoor/outdoor navigation for flying robots. In IEEE International Conference on Intelligent Robots and Systems (pp. 3955–3962).

    Google Scholar 

  79. Lopez, B. T., & How, J. P. (2017, May). Aggressive 3-D collision avoidance for high-speed navigation. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5759–5765).

    Google Scholar 

  80. Matthies, L., Brockers, R., Kuwata, Y., & Weiss, S. (2014, May). Stereo vision-based obstacle avoidance for micro air vehicles using disparity space. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3242–3249).

    Google Scholar 

  81. Cao, T., Xiang, Z., & Liu, J. (2015, October). Perception in disparity: An efficient navigation framework for autonomous vehicles with stereo cameras. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2935–2948.

    Article  Google Scholar 

  82. Matthies, L., Brockers, R., Kuwata, Y., & Weiss, S. (2014, May). Stereo vision-based obstacle avoidance for micro air vehicles using disparity space. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3242–3249).

    Google Scholar 

  83. McGuire, K., de Croon, G., De Wagter, C., Tuyls, K., & Kappen, H. (2017, April). Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket drone. IEEE Robotics and Automation Letters, 2(2), 1070–1076.

    Article  Google Scholar 

  84. Hrabar, S., Sukhatme, G. S., Corke, P., Usher, K., & Roberts, J. (2005, August). Combined optic-flow and stereo-based navigation of urban canyons for a UAV. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3309–3316).

    Google Scholar 

  85. Cao, T., Xiang, Z., & Liu, J. (2015, October). Perception in disparity: An efficient navigation framework for autonomous vehicles with stereo cameras. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2935–2948.

    Article  Google Scholar 

  86. Otte, M. W., Richardson, S. G., Mulligan, J., & Grudic, G. (2007, October). Local path planning in image space for autonomous robot navigation in unstructured environments. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2819–2826).

    Google Scholar 

  87. Cutting, J., Vishton, P., & Braren, P. (1995, October). How we avoid collisions with stationary and moving obstacles. Psychological Review, 102(4), 627–651.

    Article  Google Scholar 

  88. Fajen, B. R. (2013, July). Guiding locomotion in complex, dynamic environments. Frontiers in Behavioral Neuroscience, 7, 85.

    Article  Google Scholar 

  89. Vallar, G., Lobel, E., Galati, G., Berthoz, A., Pizzamiglio, L., & Le Bihan, D. (1999, January). A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Experimental Brain Research, 124(3), 281–286. https://doi.org/10.1007/s002210050624.

    Article  Google Scholar 

  90. Dillon, M. R., Persichetti, A. S., Spelke, E. S., & Dilks, D. D. (2018). Places in the brain: Bridging layout and object geometry in scene-selective cortex. Cerebral Cortex, 28(7), 2365–2374.

    Article  Google Scholar 

  91. Dilks, D. D., Julian, J. B., Paunov, A. M., & Kanwisher, N. (2013). The occipital place area is causally and selectively involved in scene perception. Journal of Neuroscience, 33(4), 1331–1336.

    Article  Google Scholar 

  92. Greene, M. R., & Oliva, A. (2009). Recognition of natural scenes from global properties: Seeing the forest without representing the trees. Cognitive Psychology, 58(2), 137–176.

    Article  Google Scholar 

  93. Bonner, M., & Epstein, R. A. (2017). Coding of navigational affordances in the human visual system. Proceedings of the National Academy of Sciences, 114(18), 4793–4798.

    Article  Google Scholar 

  94. Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. Cambridge: MIT Press.

    Google Scholar 

  95. Galati, G., Lobel, E., Vallar, G., Berthoz, A., Pizzamiglio, L., & Le Bihan, D. (2000, July). The neural basis of egocentric and allocentric coding of space in humans: A functional magnetic resonance study. Experimental Brain Research, 133(2), 156–164. https://doi.org/10.1007/s002210000375.

    Article  Google Scholar 

  96. Wang, R. F., & Spelke, E. S. (2000). Updating egocentric representations in human navigation. Cognition, 77(3), 215–250. http://www.sciencedirect.com/science/article/pii/S0010027700001050.

    Article  Google Scholar 

  97. Spiers, H. J., & Maguire, E. A. (2007). A navigational guidance system in the human brain. Hippocampus, 17(8), 618–626. https://onlinelibrary.wiley.com/doi/abs/10.1002/hipo.20298.

    Article  Google Scholar 

  98. Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12(10), 388–396. http://www.sciencedirect.com/science/article/pii/S136466130800199X.

    Article  Google Scholar 

  99. Wilber, A. A., Clark, B. J., Forster, T. C., Tatsuno, M., & McNaughton, B. L. (2014). Interaction of egocentric and world-centered reference frames in the rat posterior parietal cortex. Journal of Neuroscience, 34(16), 5431–5446. http://www.jneurosci.org/content/34/16/5431.

    Article  Google Scholar 

  100. Smith, J., & Vela, P. (2017). Planning in perception space. In IEEE International Conference on Robotics and Automation (pp. 6204–6209).

    Google Scholar 

  101. Felzenszwalb, P., & Huttenlocher, D. (2012). Distance transforms of sampled functions. Theory of Computing, 8(19), 415–428.

    Article  MathSciNet  MATH  Google Scholar 

  102. Rusu, R. B., & Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011.

    Google Scholar 

  103. OctoMap, Github - octomap/octomap_mapping, Oct 2017. https://github.com/OctoMap/octomap_mapping.

  104. Pan, J., Chitta, S., & Manocha, D. (2012, May). FCL: A general purpose library for collision and proximity queries. In 2012 IEEE International Conference on Robotics and Automation (pp. 3859–3866).

    Google Scholar 

  105. Brockers, R., Fragoso, A., Matthies, L. (2016). Stereo vision-based obstacle avoidance for micro air vehicles using an egocylindrical image space representation. In Micro- and Nanotechnology Sensors, Systems, and Applications VIII (Vol. 9836). http://dx.doi.org/10.1117/12.2224695.

  106. Asada, M., Tanaka, T., & Hosoda, K. (2016, April). Adaptive binocular visual servoing for independently moving target tracking. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065) (Vol. 3, pp. 2076–2081. http://ieeexplore.ieee.org/document/846335/.

    Google Scholar 

  107. Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1), 7–42. http://dx.doi.org/10.1023/A:1014573219977.

    Article  MATH  Google Scholar 

  108. Hirschmuller, H. (2005, June). Accurate and efficient stereo processing by semi-global matching and mutual information. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (Vol. 2, pp. 807–814).

    Google Scholar 

  109. Jin, S., Cho, J., Pham, X. D., Lee, K. M., Park, S. Kim, M., et al. (2010, January). FPGA design and implementation of a real-time stereo vision system. IEEE Transactions on Circuits and Systems for Video Technology, 20(1), 15–26.

    Article  Google Scholar 

  110. Li, Y., Yang, C., Zhong, W., Li, Z., & Chen, S. (2017, January). High throughput hardware architecture for accurate semi-global matching. In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC) (pp. 641–646).

    Google Scholar 

  111. Hernandez-Juarez, D., Chacón, A., Espinosa, A., Vázquez, D., Moure, J. C., & López, A. M. (2016). Embedded real-time stereo estimation via semi-global matching on the GPU. Procedia Computer Science, 80, 143–153.

    Article  Google Scholar 

  112. Sprunk, C., Röwekämper, J., Parent, G., Spinello, L., Tipaldi, G. D., Burgard, W., et al. (2016). An experimental protocol for benchmarking robotic indoor navigation. In Experimental Robotics (pp. 487–504). Berlin: Springer.

    Chapter  Google Scholar 

  113. Smith, J., Hwang, J., & Vela, P. (2018). Benchmark worlds for testing autonomous navigation algorithms. [Repository]. http://github.com/ivalab/NavBench.

  114. Rockey, C. (2014). depthimage_to_laserscan. [Repository]. https://github.com/ros-perception/depthimage_to_laserscan.

  115. Mihelich, P., Konolige, K., & Leibs, J. Github - ros-perception/image_pipeline/stereo _image_proc. https://github.com/ros-perception/image_pipeline.git.

Download references

Acknowledgement

This work was supported in part by NSF Awards #1400256 and #1849333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio A. Vela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, J.S., Feng, S., Lyu, F., Vela, P.A. (2020). Real-Time Egocentric Navigation Using 3D Sensing. In: Sergiyenko, O., Flores-Fuentes, W., Mercorelli, P. (eds) Machine Vision and Navigation. Springer, Cham. https://doi.org/10.1007/978-3-030-22587-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22587-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22586-5

  • Online ISBN: 978-3-030-22587-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics