Skip to main content

Control and Automation for Miniaturized Microwave GSG Nanoprobing

  • Chapter
  • First Online:
Machine Vision and Navigation

Abstract

The general objective addresses the challenge of the miniaturized microwave characterization of nanodevices. The method is based on a measurement setup that consists of a vector network analyzer (VNA) connected through coaxial cables to miniaturized homemade coplanar waveguide (CPW) probes (one signal contact and two ground contacts), which are themselves mounted on three-axis piezoelectric nanomanipulators SmarAct™. The device under test (DUT) is positioned on a sample holder equipped also with nanopositioners and a rotation system with μ-degree resolution. The visualization is carried out by a scanning electron microscope (SEM) instead of conventional optics commonly found in usual on-wafer probe stations. This study addresses the challenge related to the control of nanomanipulators in order to ensure precisely the contact between the probe tips and the DUT to be characterized. The DUT is inserted between the central ribbon and the ground planes of the coplanar test structure (width of the central ribbon = 2.3 μm, distance between the central ribbon and the ground planes = 1.8 μm). First, we use classical automatic linear tools to identify the transfer function of a system of three linear nanopositioners along the X, Y, and Z axes. This part allows the precise control of each nanomanipulator using LabVIEW™, with an overshoot of the final value (according to a minimal response time in X and Y) or without an overshoot of the final value (in order to avoid any crashing of the probe tips on the substrate in Z). Second, we propose an angular control methodology (using Matlab™) in order to align the probe tips on the CPW ports of the DUT. Finally, the detection of the points of interest (use of the Harris detector) allows one to determine the set point value of each linear nanopositioner X, Y, and Z. These three steps ensure the precise positioning of the probe tips to ensure accurate microwave characterization of the DUT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CPW:

Coplanar waveguide

DUT:

Device under test

GaN nanowires:

Gallium nitride nanowires

GSG:

Ground signal ground

HF:

High frequency

HIL:

Hardware-In-the-Loop

MEMS:

Microelectromechanical systems

PID controller:

Proportional–integral–derivative controller

RF:

Radio frequency

SEM:

Scanning electron microscope

SWNT:

Single-walled nanotube

VNA:

Vector network analyzer

References

  1. The International Technology Roadmap for Semiconductors (ITRS). (2013). Retrieved from http://www.itrs.net/Links/2013ITRS/2013Chapters/2013ERD.pdf.

  2. Happy, H., Haddadi, K., Théron, D., Lasri, T., & Dambrine, G. (2014). Measurement techniques for RF nanoelectronic devices: New equipment to overcome the problems of impedance and scale mismatch. IEEE Microwave Magazine, 15(1), 30–39.

    Article  Google Scholar 

  3. Rumiantsev, A., & Doerner, R. (2013). RF Probe Technology. IEEE Microwave Magazine, 14, 46–58.

    Article  Google Scholar 

  4. Daffé, K., Dambrine, G., Von Kleist-Retzow, F., & Haddadi, K. (2016). RF wafer probing with improved contact repeatability using nanometer positioning. In 87th ARFTG Microwave Measurement Conference Dig, San Francisco, CA, pp. 1–4.

    Google Scholar 

  5. Yu, Z., & Burke, P. J. (2005). Microwave transport in single-walled carbon nanotubes. Nano Letters, 5(7), 1403–1406.

    Article  Google Scholar 

  6. Wallis, T., Imtiaz, A., Nembach, H., Bertness, K. A., Sanford, N. A., Blanchard, P. T., & Kabos, P. (2008). Calibrated broadband electrical characterization of nanowires. In 2008 Conference on Precision Electromagnetic Measurements Digest, Broomfield, CO, pp. 684–685.

    Google Scholar 

  7. Nougaret, L., Dambrine, G., Lepilliet, S., Happy, H., Chimot, N., Derycke, V., & Bourgoin, J.-P. (2010). Gigahertz characterization of a single carbon nanotube. Applied Physics Letters, 96(4), 042109-1–042109-3.

    Article  Google Scholar 

  8. Li, S., Yu, Z., Yen, S.-F., Tang, W. C., & Burke, P. J. (2004). Carbon nanotube transistor operation at 2.6 GHz. Nano Letters, 4(4), 753–756.

    Article  Google Scholar 

  9. Rosenblatt, S., Lin, H., Sazonova, V., Tiwari, S., & McEuen, P. L. (2005). Mixing at 50 GHz using a single-walled carbon nanotube transistor. Applied Physics Letters, 87(15), 153111.

    Article  Google Scholar 

  10. El Fellahi, A., Haddadi, K., Marzouk, J., Arscott, S., Boyaval, C., Lasri, T., & Dambrine, G. (2015). Integrated MEMS RF probe for SEM station—Pad size and parasitic capacitance reduction. IEEE Microwave and Wireless Components Letters, 25(10), 693–695.

    Article  Google Scholar 

  11. Marzouk, J., Arscott, S., El Fellahi, A., Haddadi, K., Lasri, T., Boyaval, C., & Dambrine, G. (2015). MEMS probes for on-wafer RF microwave characterization of future microelectronics: design, fabrication and characterization. Journal of Micromechanics and Microengineering—IOPscience, 25(7).

    Google Scholar 

  12. El Fellahi, A., Haddadi, K., Marzouk, J., Arscott, S., Boyaval, C., Lasri, T., & Dambrine, G. (2015, September). Nanorobotic RF probe station for calibrated on-wafer measurements. In 45th European Microwave Conference, Paris, France, pp. 1–4.

    Google Scholar 

  13. Reichelt, R. (2007). Scanning electron microscopy. In Science of microscopy (pp. 133–272). New-York: Springer.

    Chapter  Google Scholar 

  14. https://www.smaract.com/SmarAct_Catalog_v16.pdf

  15. National instruments NI. LabVIEW control design user manual.

    Google Scholar 

  16. Halvorsen, H.-P., Department of Electrical Engineering, Information Technology and Cybernetics. Control and simulation in LabVIEW.

    Google Scholar 

  17. Harris, C., & Stephens, M. (1988). A combined corner and edge detector. In 4th Alvey Vision Conference, pp. 147–151.

    Google Scholar 

  18. Mikolajczyk, K., & Schmid, C. (2002). An affine invariant interest point detector. In A. Heyden et al. (Eds.), ECCV 2002, LNCS 2350 (pp. 128–142). Berlin; Heidelberg: Springer.

    Google Scholar 

Download references

Acknowledgment

This work is supported by the French National Research Agency (ANR) under the EquipEx Excelsior (www.excelsior-ncc.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Pomorski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taleb, A., Pomorski, D., Boyaval, C., Arscott, S., Dambrine, G., Haddadi, K. (2020). Control and Automation for Miniaturized Microwave GSG Nanoprobing. In: Sergiyenko, O., Flores-Fuentes, W., Mercorelli, P. (eds) Machine Vision and Navigation. Springer, Cham. https://doi.org/10.1007/978-3-030-22587-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22587-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22586-5

  • Online ISBN: 978-3-030-22587-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics