Skip to main content

Waste Biomass Pretreatment Methods

  • Chapter
  • First Online:
Utilising Biomass in Biotechnology

Abstract

Pretreatment of residual biomass is one of the key elements in integrated conversion processes such as biorefineries. Biotechnology projects rely heavily on the efficient, technical, economic, and environmental feasibility of pretreatments. Pretreatment is a unitary operation that precedes a certain process, and it is not itself the ultimate goal of the activity. Nevertheless, the inclusion of this step increases the efficiency of subsequent processes by increasing accessibility to the primordial biomass structure, facilitating access to enzymes and reagents used in the development of high added-value products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lomovsky O, Bychkov A, Lomovsky I (2016) Chapter 2: Mechanical pretreatment. In: Mussatto SI (ed) BFT for a LFBB. Elsevier, Amsterdam, pp 23–55

    Google Scholar 

  2. Dahunsi SO (2019) Mechanical pretreatment of lignocelluloses for enhanced biogas production: methane yield prediction from biomass structural components. Bioresour Technol 280:18–26. https://doi.org/10.1016/j.biortech.2019.02.006

    Article  Google Scholar 

  3. Elliott A, Mahmood T (2012) Comparison of mechanical pretreatment methods for the enhancement of anaerobic digestion of pulp and paper waste activated sludge. Water Environ Res 84:497–505. https://doi.org/10.2175/106143012X13347678384602

    Article  Google Scholar 

  4. Venturin B, Bonatto C, Damaceno FM, Mulinari J, Fongaro G, Treichel H (2019) Physical, chemical, and biological substrate pretreatments to enhance biogas yield. In: Fongaro G, Treichel H (eds) Improving biogas production: technological challenges, alternative sources, future developments. Springer International Publishing, Cham, pp 25–44

    Chapter  Google Scholar 

  5. Bychkov AL, Ryabchikova EI, Korolev KG, Lomovsky OI (2012) Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material. Biomass Bioenerg 47:260–267. https://doi.org/10.1016/j.biombioe.2012.09.035

    Article  Google Scholar 

  6. Karinkanta P, Ämmälä A, Illikainen M, Niinimäki J (2018) Fine grinding of wood—overview from wood breakage to applications. Biomass Bioenerg 113:31–44. https://doi.org/10.1016/j.biombioe.2018.03.007

    Article  Google Scholar 

  7. Lee H, Mani S (2017) Mechanical pretreatment of cellulose pulp to produce cellulose nanofibrils using a dry grinding method. Ind Crops Prod 104:179–187. https://doi.org/10.1016/j.indcrop.2017.04.044

    Article  Google Scholar 

  8. Pirich CL, Picheth GF, Machado JPE, Sakakibara CN, Martin AA, de Freitas RA, Sierakowski MR (2019) Influence of mechanical pretreatment to isolate cellulose nanocrystals by sulfuric acid hydrolysis. Int J Biol Macromol 130:622–626. https://doi.org/10.1016/j.ijbiomac.2019.02.166

    Article  Google Scholar 

  9. Duque A, Manzanares P, Ballesteros I, Negro MJ, Oliva JM, Saez F, Ballesteros M (2014) Study of process configuration and catalyst concentration in integrated alkaline extrusion of barley straw for bioethanol production. Fuel 134:448–454. https://doi.org/10.1016/j.fuel.2014.05.084

    Article  Google Scholar 

  10. Duque A, Manzanares P, Ballesteros M (2017) Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications. Renew Energy 114:1427–1441. https://doi.org/10.1016/j.renene.2017.06.050

    Article  Google Scholar 

  11. Lamsal B, Yoo J, Brijwani K, Alavi S (2010) Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol. Biomass Bioenerg 34:1703–1710. https://doi.org/10.1016/j.biombioe.2010.06.009

    Article  Google Scholar 

  12. Karunanithy C, Muthukumarappan K (2013) Thermo-mechanical pretreatment of feedstocks. In: Green biomass pretreatment for biofuels production. In: Gu T (ed) Springer Netherlands, Dordrecht, pp 31–65

    Google Scholar 

  13. de Vrije T, de Haas GG, Tan GB, Keijsers ERP, Claassen PAM (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrogen Energy 27:1381–1390. https://doi.org/10.1016/S0360-3199(02)00124-6

    Article  Google Scholar 

  14. Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18:1–18. https://doi.org/10.1016/j.ultsonch.2010.02.014

    Article  Google Scholar 

  15. Wen C, Zhang J, Zhang H, Dzah CS, Zandile M, Duan Y, Ma H, Luo X (2018) Advances in ultrasound assisted extraction of bioactive compounds from cash crops—a review. Ultrason Sonochem 48:538–549. https://doi.org/10.1016/j.ultsonch.2018.07.018

    Article  Google Scholar 

  16. Tan SX, Lim S, Ong HC, Pang YL (2019) State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel 235:886–907. https://doi.org/10.1016/j.fuel.2018.08.021

    Article  Google Scholar 

  17. Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21:323–331. https://doi.org/10.1016/j.tifs.2010.04.003

    Article  Google Scholar 

  18. Bundhoo ZMA, Mohee R (2018) Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: a review. Ultrason Sonochem 40:298–313. https://doi.org/10.1016/j.ultsonch.2017.07.025

    Article  Google Scholar 

  19. Ohl C-D, Wolfrum B (2003) Detachment and sonoporation of adherent HeLa-cells by shock wave-induced cavitation. Biochim Biophys Acta Gen Subj 1624:131–138. https://doi.org/10.1016/j.bbagen.2003.10.005

    Article  Google Scholar 

  20. Show K-Y, Mao T, Lee D-J (2007) Optimisation of sludge disruption by sonication. Water Res 41:4741–4747. https://doi.org/10.1016/j.watres.2007.07.017

    Article  Google Scholar 

  21. Qiu W-Y, Cai W-D, Wang M, Yan J-K (2019) Effect of ultrasonic intensity on the conformational changes in citrus pectin under ultrasonic processing. Food Chem 297:125021. https://doi.org/10.1016/j.foodchem.2019.125021

    Article  Google Scholar 

  22. Luo J, Fang Z, Smith RL (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci 41:56–93. https://doi.org/10.1016/j.pecs.2013.11.001

    Article  Google Scholar 

  23. Chemat F, Rombaut N, Sicaire A-G, Meullemiestre A, Fabiano-Tixier A-S, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035

    Article  Google Scholar 

  24. Xu Y, Zhang L, Bailina Y, Ge Z, Ding T, Ye X, Liu D (2014) Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. J Food Eng 126:72–81. https://doi.org/10.1016/j.jfoodeng.2013.11.004

    Article  Google Scholar 

  25. Chen C, You L-J, Abbasi AM, Fu X, Liu RH (2015) Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro. Carbohydr Polym 130:122–132. https://doi.org/10.1016/j.carbpol.2015.05.003

    Article  Google Scholar 

  26. Zheng Z, Huang Q, Luo X, Xiao Y, Cai W, Ma H (2019) Effects and mechanisms of ultrasound- and alkali-assisted enzymolysis on production of water-soluble yeast β-glucan. Bioresour Technol 273:394–403. https://doi.org/10.1016/j.biortech.2018.11.035

    Article  Google Scholar 

  27. Kappe CO, Pieber B, Dallinger D (2013) Microwave effects in organic synthesis: myth or reality? Angew Chemie Int Ed 52:1088–1094. https://doi.org/10.1002/anie.201204103

    Article  Google Scholar 

  28. Asomaning J, Haupt S, Chae M, Bressler DC (2018) Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals. Renew Sustain Energy Rev 92:642–657. https://doi.org/10.1016/j.rser.2018.04.084

    Article  Google Scholar 

  29. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chemie Int Ed 43:6250–6284. https://doi.org/10.1002/anie.200400655

    Article  Google Scholar 

  30. Sun J, Wang W, Yue Q (2016) Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 9

    Google Scholar 

  31. Li H, Qu Y, Yang Y, Chang S, Xu J (2016) Microwave irradiation—a green and efficient way to pretreat biomass. Bioresour Technol 199:34–41

    Article  Google Scholar 

  32. Hassan SS, Williams GA, Jaiswal AK (2018) Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour Technol 262:310–318. https://doi.org/10.1016/j.biortech.2018.04.099

    Article  Google Scholar 

  33. Wang K, Chen J, Sun S-N, Sun R-C (2015) Chapter 6: Steam explosion. In: Pandey A, Negi S, Binod P, Larroche C (eds) P of B. Elsevier, Amsterdam, pp 75–104

    Google Scholar 

  34. Silva AS da, Teixeira RSS, Moutta R de O, Ferreira-Leitão VS, Barros R da RO de B, Ferrara MA, Bon EP da S (2013) Sugarcane and woody biomass pretreatments for ethanol production. In: Chandel AK, Silva SS da (eds) Sustainable degradation of lignocellulosic biomass—techniques, applications and commercialization. IntechOpen, Rijeka, Ch. 3

    Google Scholar 

  35. Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW (2017) Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour Technol 245:1194–1205. https://doi.org/10.1016/j.biortech.2017.08.182

    Article  Google Scholar 

  36. Wang K, Jiang J-X, Xu F, Sun R-C (2009) Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytobotrya). Bioresour Technol 100:5288–5294. https://doi.org/10.1016/j.biortech.2009.05.019

    Article  Google Scholar 

  37. Yu Q, Liu R, Li K, Ma R (2019) A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renew Sustain Energy Rev 107:51–58. https://doi.org/10.1016/j.rser.2019.02.020

    Article  Google Scholar 

  38. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  Google Scholar 

  39. Pérez JA, Ballesteros I, Ballesteros M, Sáez F, Negro MJ, Manzanares P (2008) Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87:3640–3647. https://doi.org/10.1016/j.fuel.2008.06.009

    Article  Google Scholar 

  40. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. https://doi.org/10.1016/j.biortech.2004.06.025

    Article  Google Scholar 

  41. Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44. https://doi.org/10.1016/S0960-8524(01)00103-1

    Article  Google Scholar 

  42. Bali G, Meng X, Deneff JI, Sun Q, Ragauskas AJ (2015) The effect of alkaline pretreatment methods on cellulose structure and accessibility. Chemsuschem 8:275–279. https://doi.org/10.1002/cssc.201402752

    Article  Google Scholar 

  43. Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91. https://doi.org/10.1016/j.biortech.2015.08.029

    Article  Google Scholar 

  44. Kang X, Sun Y, Li L, Kong X, Yuan Z (2018) Improving methane production from anaerobic digestion of Pennisetum hybrid by alkaline pretreatment. Bioresour Technol 255:205–212. https://doi.org/10.1016/j.biortech.2017.12.001

    Article  Google Scholar 

  45. Xu J, Cheng JJ, Sharma-Shivappa RR, Burns JC (2010) Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresour Technol 101:2900–2903. https://doi.org/10.1016/j.biortech.2009.12.015

    Article  Google Scholar 

  46. Liang Y, Zheng Z, Luo X, Si Y, Cao D, Nie E, Cheng B (2013) Lime pretreatment to improve methane production of smooth cordgrass (Spartina alterniflora). Chem Eng J 217:337–344. https://doi.org/10.1016/j.cej.2012.11.135

    Article  Google Scholar 

  47. Li X, Kim TH (2011) Low-liquid pretreatment of corn stover with aqueous ammonia. Bioresour Technol 102:4779–4786. https://doi.org/10.1016/j.biortech.2011.01.008

    Article  Google Scholar 

  48. Liu X, Zicari SM, Liu G, Li Y, Zhang R (2015) Pretreatment of wheat straw with potassium hydroxide for increasing enzymatic and microbial degradability. Bioresour Technol 185:150–157. https://doi.org/10.1016/j.biortech.2015.02.047

    Article  Google Scholar 

  49. Li M, Eskridge K, Liu E, Wilkins M (2019) Enhancement of polyhydroxybutyrate (PHB) production by 10-fold from alkaline pretreatment liquor with an oxidative enzyme-mediator-surfactant system under Plackett-Burman and central composite designs. Bioresour Technol 281:99–106. https://doi.org/10.1016/j.biortech.2019.02.045

    Article  Google Scholar 

  50. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  51. Sierra R, Holtzapple MT, Granda CB (2011) Long-term lime pretreatment of poplar wood. AIChE J 57:1320–1328. https://doi.org/10.1002/aic.12350

    Article  Google Scholar 

  52. Soares Rodrigues CI, Jackson JJ, Montross MD (2016) A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions. Ind Crops Prod 92:165–173. https://doi.org/10.1016/j.indcrop.2016.08.010

    Article  Google Scholar 

  53. Taherzadeh JM, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol, Sci, p 9

    Google Scholar 

  54. Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631. https://doi.org/10.1016/j.carbpol.2014.10.012

    Article  Google Scholar 

  55. Kim TH, Gupta R, Lee YY (2009) Pretreatment of biomass by aqueous ammonia for bioethanol production. In: Mielenz JR (ed) Biofuels: methods and protocols. Humana Press, Totowa, NJ, pp 79–91

    Chapter  Google Scholar 

  56. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085

    Article  Google Scholar 

  57. Hong E, Kim D, Kim J, Kim J, Yoon S, Rhie S, Ha S, Ryu Y (2015) Optimization of alkaline pretreatment on corn stover for enhanced production of 1.3-propanediol and 2,3-butanediol by Klebsiella pneumoniae AJ4. Biomass Bioenerg 77:177–185. https://doi.org/10.1016/j.biombioe.2015.03.016

    Article  Google Scholar 

  58. Sajad Hashemi S, Karimi K, Majid Karimi A (2019) Ethanolic ammonia pretreatment for efficient biogas production from sugarcane bagasse. Fuel 248:196–204. https://doi.org/10.1016/j.fuel.2019.03.080

    Article  Google Scholar 

  59. Kim TH, Nghiem NP, Hicks KB (2009) Pretreatment and fractionation of corn stover by soaking in ethanol and aqueous ammonia. Appl Biochem Biotechnol 153:171–179. https://doi.org/10.1007/s12010-009-8524-0

    Article  Google Scholar 

  60. Mancini G, Papirio S, Lens PNL, Esposito G (2018) Increased biogas production from wheat straw by chemical pretreatments. Renew Energy 119:608–614. https://doi.org/10.1016/j.renene.2017.12.045

    Article  Google Scholar 

  61. Mirahmadi K, Mohseni Kabir M, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. Bioresources 5(2)

    Google Scholar 

  62. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53. https://doi.org/10.1016/j.pecs.2014.01.001

    Article  Google Scholar 

  63. Mathew AK, Parameshwaran B, Sukumaran RK, Pandey A (2016) An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. Bioresour Technol 199:13–20. https://doi.org/10.1016/j.biortech.2015.08.121

    Article  Google Scholar 

  64. Yu H, Xiao W, Han L, Huang G (2019) Characterization of mechanical pulverization/phosphoric acid pretreatment of corn stover for enzymatic hydrolysis. Bioresour Technol 282:69–74. https://doi.org/10.1016/j.biortech.2019.02.104

    Article  Google Scholar 

  65. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  66. Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102. https://doi.org/10.1016/j.biortech.2015.07.106

    Article  Google Scholar 

  67. Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58. https://doi.org/10.1016/j.biortech.2015.08.061

    Article  Google Scholar 

  68. Amiri H, Karimi K (2018) Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: challenges and perspectives. Bioresour Technol 270:702–721. https://doi.org/10.1016/j.biortech.2018.08.117

    Article  Google Scholar 

  69. Lee J-W, Jeffries TW (2011) Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour Technol 102:5884–5890. https://doi.org/10.1016/j.biortech.2011.02.048

    Article  Google Scholar 

  70. Liu X, Wei W, Wu S (2019) Synergism of organic acid and deep eutectic solvents pretreatment for the co-production of oligosaccharides and enhancing enzymatic saccharification. Bioresour Technol 290:121775. https://doi.org/10.1016/j.biortech.2019.121775

    Article  Google Scholar 

  71. Amnuaycheewa P, Hengaroonprasan R, Rattanaporn K, Kirdponpattara S, Cheenkachorn K, Sriariyanun M (2016) Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids. Ind Crops Prod 87:247–254. https://doi.org/10.1016/j.indcrop.2016.04.069

    Article  Google Scholar 

  72. Rabemanolontsoa H, SAKA S (2012) Characterization of Lake Biwa macrophytes in their chemical composition. J Jpn Inst Energy 91:621–628. https://doi.org/10.3775/jie.91.621

  73. Zhang Y, Wang B, Zhang W, Xu W, Hu Z (2019) Effects and mechanism of dilute acid soaking with ultrasound pretreatment on rice bran protein extraction. J Cereal Sci 87:318–324. https://doi.org/10.1016/j.jcs.2019.04.018

    Article  Google Scholar 

  74. Fang H, Deng J, Zhang T (2011) Dilute acid pretreatment of black spruce using continuous steam explosion system. Appl Biochem Biotechnol 163:547–557. https://doi.org/10.1007/s12010-010-9061-6

    Article  Google Scholar 

  75. Buranov AU, Mazza G (2010) Extraction and characterization of hemicelluloses from flax shives by different methods. Carbohydr Polym 79(1):17–25. https://doi.org/10.1016/j.carbpol.2009.06.014

  76. Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861. https://doi.org/10.1002/bit.20905

    Article  Google Scholar 

  77. Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33. https://doi.org/10.1016/j.biortech.2015.08.102

    Article  Google Scholar 

  78. Ouyang X, Zhu G, Huang X, Qiu X (2015) Microwave assisted liquefaction of wheat straw alkali lignin for the production of monophenolic compounds. J Energy Chem 24:72–76. https://doi.org/10.1016/S2095-4956(15)60286-8

    Article  Google Scholar 

  79. Rabelo SC, Filho RM, Costa AC (2008) A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production. Appl Biochem Biotechnol 148:45–58. https://doi.org/10.1007/s12010-008-8200-9

    Article  Google Scholar 

  80. Rabelo SC, Carrere H, Maciel Filho R, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102:7887–7895. https://doi.org/10.1016/j.biortech.2011.05.081

    Article  Google Scholar 

  81. Gould JM (1984) Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol Bioeng 26:46–52. https://doi.org/10.1002/bit.260260110

    Article  Google Scholar 

  82. Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64:139–151. https://doi.org/10.1016/S0960-8524(97)00164-8

    Article  Google Scholar 

  83. Varga E, Klinke HB, Réczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88:567–574. https://doi.org/10.1002/bit.20222

    Article  Google Scholar 

  84. Fu D, Chen J, Liang X (2005) Wet air oxidation of nitrobenzene enhanced by phenol. Chemosphere 59:905–908. https://doi.org/10.1016/j.chemosphere.2004.11.004

    Article  Google Scholar 

  85. Martín Medina CO, Marcet M, Thomsen AB (2008) Comparison of wet oxidation and steam explosion as pretreatment methods for bioethanol production from sugarcane bagasse. BioResources 3:670–683. https://doi.org/10.15376/BIORES.3.3.670-683

    Article  Google Scholar 

  86. Kaparaju P, Felby C (2010) Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Bioresour Technol 101:3175–3181. https://doi.org/10.1016/j.biortech.2009.12.008

    Article  Google Scholar 

  87. Jing G, Luan M, Chen T (2016) Progress of catalytic wet air oxidation technology. Arab J Chem 9:S1208–S1213. https://doi.org/10.1016/j.arabjc.2012.01.001

    Article  Google Scholar 

  88. Delgado JJ, Pérez-Omil JA, Rodríguez-Izquierdo JM, Cauqui MA (2006) The role of the carbonaceous deposits in the Catalytic Wet Oxidation (CWO) of phenol. Catal Commun 7:639–643. https://doi.org/10.1016/j.catcom.2006.02.003

    Article  Google Scholar 

  89. Travaini R, Barrado E, Bolado-Rodríguez S (2016) Effect of ozonolysis pretreatment parameters on the sugar release, ozone consumption and ethanol production from sugarcane bagasse. Bioresour Technol 214:150–158. https://doi.org/10.1016/j.biortech.2016.04.102

    Article  Google Scholar 

  90. Wan Omar WNN, Amin NAS (2016) Multi response optimization of oil palm frond pretreatment by ozonolysis. Ind Crops Prod 85:389–402. https://doi.org/10.1016/j.indcrop.2016.01.027

    Article  Google Scholar 

  91. Panneerselvam A, Sharma-Shivappa RR, Kolar P, Ranney T, Peretti S (2013) Potential of ozonolysis as a pretreatment for energy grasses. Bioresour Technol 148:242–248. https://doi.org/10.1016/j.biortech.2013.08.129

    Article  Google Scholar 

  92. Bule MV, Gao AH, Hiscox B, Chen S (2013) Structural modification of lignin and characterization of pretreated wheat straw by ozonation. J Agric Food Chem 61:3916–3925. https://doi.org/10.1021/jf4001988

    Article  Google Scholar 

  93. Perrone OM, Rossi JS, Moretti MM de S, Nunes C da CC, Bordignon SE, Gomes E, Da-Silva R, Boscolo M (2017) Influence of ozonolysis time during sugarcane pretreatment: effects on the fiber and enzymatic saccharification. Bioresour Technol 224:733–737. https://doi.org/10.1016/j.biortech.2016.11.043

  94. Travaini R, Otero MDM, Coca M, Da-Silva R, Bolado S (2013) Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresour Technol 133:332–339. https://doi.org/10.1016/j.biortech.2013.01.133

    Article  Google Scholar 

  95. Halder P, Kundu S, Patel S, Setiawan A, Atkin R, Parthasarthy R, Paz-Ferreiro J, Surapaneni A, Shah K (2019) Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renew Sustain Energy Rev 105:268–292. https://doi.org/10.1016/j.rser.2019.01.052

    Article  Google Scholar 

  96. Asim AM, Uroos M, Naz S, Sultan M, Griffin G, Muhammad N, Khan AS (2019) Acidic ionic liquids: promising and cost-effective solvents for processing of lignocellulosic biomass. J Mol Liq 287:110943. https://doi.org/10.1016/j.molliq.2019.110943

    Article  Google Scholar 

  97. Semerci I, Güler F (2018) Protic ionic liquids as effective agents for pretreatment of cotton stalks at high biomass loading. Ind Crops Prod 125:588–595. https://doi.org/10.1016/j.indcrop.2018.09.046

    Article  Google Scholar 

  98. Li Y, Liu X, Zhang S, Yao Y, Yao X, Xu J, Lu X (2015) Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study. Phys Chem Chem Phys 17:17894–17905. https://doi.org/10.1039/C5CP02009C

    Article  Google Scholar 

  99. El Seoud OA, da Silva VC, Possidonio S, Casarano R, Arêas EPG, Gimenes P (2011) Microwave-assisted derivatization of cellulose, 2–The surprising effect of the structure of ionic liquids on the dissolution and acylation of the biopolymer. Macromol Chem Phys 212:2541–2550. https://doi.org/10.1002/macp.201100348

    Article  Google Scholar 

  100. Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Aqeel Ahmed B, Sadia K, Yu G (2017) Insight into progress in pre-treatment of lignocellulosic biomass. Energy. https://doi.org/10.1016/j.energy.2017.01.005

    Article  Google Scholar 

  101. da Costa Lopes AM, João KG, Rubik DF, Bogel-Łukasik E, Duarte LC, Andreaus J, Bogel-Łukasik R (2013) Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresour Technol 142:198–208. https://doi.org/10.1016/j.biortech.2013.05.032

    Article  Google Scholar 

  102. Sathitsuksanoh N, George A, Zhang Y-HP (2013) New lignocellulose pretreatments using cellulose solvents: a review. J Chem Technol Biotechnol 88:169–180. https://doi.org/10.1002/jctb.3959

    Article  Google Scholar 

  103. Tian S-Q, Zhao R-Y, Chen Z-C (2018) Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew Sustain Energy Rev 91:483–489. https://doi.org/10.1016/j.rser.2018.03.113

    Article  Google Scholar 

  104. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815. https://doi.org/10.1007/s00253-009-1883-1

    Article  Google Scholar 

  105. Koo B-W, Kim H-Y, Park N, Lee S-M, Yeo H, Choi I-G (2011) Organosolv pretreatment of Liriodendron tulipifera and simultaneous saccharification and fermentation for bioethanol production. Biomass Bioenerg 35:1833–1840. https://doi.org/10.1016/j.biombioe.2011.01.014

    Article  Google Scholar 

  106. Smit A, Huijgen W (2017) Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process. Green Chem 19:5505–5514. https://doi.org/10.1039/C7GC02379K

    Article  Google Scholar 

  107. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  Google Scholar 

  108. Yáñez-S M, Matsuhiro B, Nuñez C, Pan S, Hubbell CA, Sannigrahi P, Ragauskas AJ (2014) Physicochemical characterization of ethanol organosolv lignin (EOL) from Eucalyptus globulus: effect of extraction conditions on the molecular structure. Polym Degrad Stab 110:184–194. https://doi.org/10.1016/j.polymdegradstab.2014.08.026

    Article  Google Scholar 

  109. Jang S-K, Kim H-Y, Jeong H-S, Kim J-Y, Yeo H, Choi I-G (2016) Effect of ethanol organosolv pretreatment factors on enzymatic digestibility and ethanol organosolv lignin structure from Liriodendron tulipifera in specific combined severity factors. Renew Energy 87:599–606. https://doi.org/10.1016/j.renene.2015.10.045

    Article  Google Scholar 

  110. Tan X, Zhang Q, Wang W, Zhuang X, Deng Y, Yuan Z (2019) Comparison study of organosolv pretreatment on hybrid Pennisetum for enzymatic saccharification and lignin isolation. Fuel 249:334–340. https://doi.org/10.1016/j.fuel.2019.03.117

    Article  Google Scholar 

  111. Guo Y, Zhou J, Wen J, Sun G, Sun Y (2015) Structural transformations of triploid of Populus tomentosa Carr. lignin during auto-catalyzed ethanol organosolv pretreatment. Ind Crops Prod 76:522–529. https://doi.org/10.1016/j.indcrop.2015.06.020

    Article  Google Scholar 

  112. Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67:21–33. https://doi.org/10.1016/j.jfoodeng.2004.05.060

    Article  Google Scholar 

  113. Narayanaswamy N, Faik A, Goetz DJ, Gu T (2011) Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour Technol 102:6995–7000. https://doi.org/10.1016/j.biortech.2011.04.052

    Article  Google Scholar 

  114. Reverchon E, De Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38:146–166. https://doi.org/10.1016/j.supflu.2006.03.020

    Article  Google Scholar 

  115. Peter van Walsum G, Shi H (2004) Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresour Technol 93:217–226. https://doi.org/10.1016/j.biortech.2003.11.009

    Article  Google Scholar 

  116. Kim TH, Lee YY (2007) Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. In: Mielenz JR, Klasson KT, Adney WS, McMillan JD (eds) Applied biochemistry and biotechnology: the twenty-eighth symposium proceedings of the twenty-eight symposium on biotechnology for fuels and chemicals held Apr 30–May. Humana Press, Totowa, NJ, pp 81–92

    Google Scholar 

  117. Zhao M, Xu Q, Li G, Zhang Q, Zhou D, Yin J, Zhan H (2019) Pretreatment of agricultural residues by supercritical CO2 at 50–80 °C to enhance enzymatic hydrolysis. J Energy Chem 31:39–45. https://doi.org/10.1016/j.jechem.2018.05.003

    Article  Google Scholar 

  118. Balan V, Bals B, Chundawat SPS, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: methods and protocols. Humana Press, Totowa, NJ, pp 61–77

    Chapter  Google Scholar 

  119. Weimer PJ, Chou YCT, Weston WM, Chase DB, Scott CD (eds) (1986) Effect of supercritical ammonia on the physical and chemical structure of ground wood. United States

    Google Scholar 

  120. Chundawat SPS, Vismeh R, Sharma LN, Humpula JF, da Costa Sousa L, Chambliss CK, Jones AD, Balan V, Dale BE (2010) Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresour Technol 101:8429–8438. https://doi.org/10.1016/j.biortech.2010.06.027

    Article  Google Scholar 

  121. Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proc Natl Acad Sci 106:1368–1373. https://doi.org/10.1073/pnas.0812364106

  122. Chen S, Zhang X, Singh D, Yu H, Yang X (2010) Biological pretreatment of lignocellulosics: potential, progress and challenges. Biofuels 1:177–199. https://doi.org/10.4155/bfs.09.13

    Article  Google Scholar 

  123. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82. https://doi.org/10.1016/j.biortech.2015.08.030

    Article  Google Scholar 

  124. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457. https://doi.org/10.1016/j.biotechadv.2012.03.003

    Article  Google Scholar 

  125. Moreira MT, Feijoo G, Mester T, Mayorga P, Sierra-Alvarez R, Field JA (1998) Role of organic acids in the manganese-independent biobleaching system of Bjerkandera sp. Strain BOS55. Appl Environ Microbiol 64:2409–2417

    Google Scholar 

  126. Martı́nez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30:425–444. https://doi.org/10.1016/S0141-0229(01)00521-X

  127. Calcaterra A, Galli C, Gentili P (2008) Phenolic compounds as likely natural mediators of laccase: a mechanistic assessment. J Mol Catal B Enzym 51:118–120. https://doi.org/10.1016/j.molcatb.2007.11.023

    Article  Google Scholar 

  128. Evans CS, Dutton MV, Guillén F, Veness RG (1994) Enzymes and small molecular mass agents involved with lignocellulose degradation. FEMS Microbiol Rev 13:235–239. https://doi.org/10.1111/j.1574-6976.1994.tb00044.x

    Article  Google Scholar 

  129. Harvey PJ, Palmer JM (1990) Oxidation of phenolic compounds by ligninase. J Biotechnol 13:169–179. https://doi.org/10.1016/0168-1656(90)90102-H

    Article  Google Scholar 

  130. Chung N, Aust SD (1995) Veratryl alcohol-mediated indirect oxidation of phenol by lignin peroxidase. Arch Biochem Biophys 316:733–737. https://doi.org/10.1006/abbi.1995.1097

    Article  Google Scholar 

  131. Binod P, Janu KU, Sindhu R, Pandey A (2011) Chapter 10: Hydrolysis of lignocellulosic biomass for bioethanol production. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E(eds) Biofuels. Academic Press, Amsterdam, pp 229–250

    Google Scholar 

  132. Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314. https://doi.org/10.1002/btpr.102

    Article  Google Scholar 

  133. Du W, Yu H, Song L, Zhang J, Weng C, Ma F, Zhang X (2011) The promoting effect of byproducts from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated cornstalks. Biotechnol Biofuels 4:37. https://doi.org/10.1186/1754-6834-4-37

    Article  Google Scholar 

  134. Ramos J, Rojas T, Navarro F, Dávalos F, Sanjuán R, Rutiaga J, Young RA (2004) Enzymatic and fungal treatments on sugarcane bagasse for the production of mechanical pulps. J Agric Food Chem 52:5057–5062. https://doi.org/10.1021/jf030728+

    Article  Google Scholar 

  135. Tabka MG, Herpoël-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb Technol 39:897–902. https://doi.org/10.1016/j.enzmictec.2006.01.021

    Article  Google Scholar 

  136. Rodrigues MAM, Pinto P, Bezerra RMF, Dias AA, Guedes CVM, Cardoso VMG, Cone JW, Ferreira LMM, Colaço J, Sequeira CA (2008) Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim Feed Sci Technol 141:326–338. https://doi.org/10.1016/j.anifeedsci.2007.06.015

    Article  Google Scholar 

  137. Xu Q-Q, Zhao M-J, Yu Z-Z, Yin J-Z, Li G-M, Zhen M-Y, Zhang Q-Z (2017) Enhancing enzymatic hydrolysis of corn cob, corn stover and sorghum stalk by dilute aqueous ammonia combined with ultrasonic pretreatment. Ind Crops Prod 109:220–226. https://doi.org/10.1016/j.indcrop.2017.08.038

    Article  Google Scholar 

  138. Cherpozat L, Loranger E, Daneault C (2019) Ultrasonic pretreatment of soft wood biomass prior to conventional pyrolysis: scale-up effects and limitations. Biomass Bioenerg 124:54–63. https://doi.org/10.1016/j.biombioe.2019.03.009

    Article  Google Scholar 

  139. Wenjing L, Chao P, Lama A, Xindi F, Rong Y, Dhar BR (2019) Effect of pre-treatments on biological methane potential of dewatered sewage sludge under dry anaerobic digestion. Ultrason Sonochem 52:224–231. https://doi.org/10.1016/j.ultsonch.2018.11.022

    Article  Google Scholar 

  140. Peng L, Appels L, Su H (2018) Combining microwave irradiation with sodium citrate addition improves the pre-treatment on anaerobic digestion of excess sewage sludge. J Environ Manage 213:271–278. https://doi.org/10.1016/j.jenvman.2018.02.053

    Article  Google Scholar 

  141. Tian X, Ng WJ, Trzcinski AP (2018) Optimizing the synergistic effect of sodium hydroxide/ultrasound pre-treatment of sludge. Ultrason Sonochem 48:432–440. https://doi.org/10.1016/j.ultsonch.2018.07.005

    Article  Google Scholar 

  142. Demichelis F, Fiore S, Onofrio M (2018) Pre-treatments aimed at increasing the biodegradability of cosmetic industrial waste. Process Saf Environ Prot 118:245–253. https://doi.org/10.1016/j.psep.2018.07.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Treichel .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Treichel, H., Fongaro, G., Scapini, T., Frumi Camargo, A., Spitza Stefanski, F., Venturin, B. (2020). Waste Biomass Pretreatment Methods. In: Utilising Biomass in Biotechnology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-22853-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22853-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22852-1

  • Online ISBN: 978-3-030-22853-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics