Skip to main content

Contact Lifetime Estimation Methods for Tribojoint Elements. A Survey

  • Chapter
  • First Online:
Structural Integrity Assessment of Engineering Components Under Cyclic Contact

Part of the book series: Structural Integrity ((STIN,volume 9))

Abstract

In this chapter, we give a survey of the available literature dealing with the methods aimed at the evaluation of the contact lifetime of elements of the rolling and fretting couples. We analyze the results of investigations in the scientific directions that can be regarded as basic for the proposed methods, namely, in the fatigue fracture mechanics and in the theory of contact problems of the mathematical theory of cracks. We also consider the applications of the contact fatigue approaches to the problems of the contact lifetime evaluation of the tribojoint elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akama M, Mori T (2002) Boundary element analysis of surface initiated rolling contact fatigue cracks in wheel/rail contact systems. Wear 253:35–41

    Article  Google Scholar 

  2. Aliabadi MH (1996) Database of stress intensity factors. Computational Mechanics Publications, Southampton, UK

    Google Scholar 

  3. Andreev AV, Gol’dshtein RV, Zhitnikov YM (1999) Ravnovesiye krivolineinykh razrezov s uchetom obrazovaniya oblastey naleganiya, skolzheniya i scepleniya beregov treshchiny (Balance of curvilinear cuts with regard for overlapping, slip, and sticking of crack faces). Preprint No. 643. Russian Academy of Sciences, Institute for Problems of Mechanics, Moscow

    Google Scholar 

  4. Andreev AV, Gol’dshtein RV, Zhitnikov YM (2001) Evolyuciya ravnovesnogo sostoyaniya gladkikh krivolineinykh treshchin so vzaimodeistvuyushchimi s treniyem poverkhnostyami v processe nagruzheniya (Evolution of the equilibrium state of smooth curvilinear cracks with surfaces interacting with friction under loading). Preprint No. 676. Russian Academy of Sciences, Institute for Problems of Mechanics, Moscow

    Google Scholar 

  5. Andreikiv AE, Darchuk AI (1992) Ustalostnoye razrusheniye i dolgovechnost` konstrukciy (Fatigue fracture and durability of structures). Naukova Dumka, Kiev

    Google Scholar 

  6. ASTM Designation E647-00 (2000) Standard test method for measurement of fatigue crack growth rates

    Google Scholar 

  7. Bastias PC, Hang GT, Rubin CA (1989) Finite element modeling of subsurface mode II cracks under contact loads. Eng Fract Mech 33:143–152

    Article  Google Scholar 

  8. Batista AC, Dias AM, Lebrun JL et al (2000) Contact fatigue of automotive gears: evolution and effects of residual stresses introduced by surface treatments. Fatigue Fract Eng Mater Struct 23, 217–228

    Google Scholar 

  9. Beghini M, Bertiny L, Fontanari V (2005) Parametric study of oblique edge cracks under cyclic contact loading. Fatigue Fract Eng Mater Struct 28(1/2):31–40

    Google Scholar 

  10. Bellecave J, Pommier S, Nadot Y, Meriaux J, Araújo JA (2014) T-stress based short crack growth model for fretting fatigue. Tribol Int 76:23–34

    Article  Google Scholar 

  11. Beynon JH, Brown MW, Kapoor A (1999) Initiation, growth and branching cracks in railway track. In: Beynon JH, Brown MW, Lindley TC et al (eds) Engineering against fatigue. A.A. Balkema Publisher, Rotterdam, pp 461–472

    Google Scholar 

  12. Beynon JH, Brown MW, Lindley TC, Smith RA, Tomkins B (eds) (1999) Engineering against fatigue. A. A. Balkema Publisher, Rotterdam

    Google Scholar 

  13. Beynon JH, Garnham JE, Sewley KJ (1996) Rolling contact fatigue of three pearlitic rail steels. Wear 192:94–111

    Article  Google Scholar 

  14. Bhargava V, Hahn GT, Rubin CA (1986) Analysis of cyclic crack growth in high strength roller bearings. Theor Appl Fract Mech 5(1):31–38

    Article  Google Scholar 

  15. Bogdanovich AV (ed) (1996) Slovo o tribofatike (A Treatise on Tribofatigue). Remiko, Gomel

    Google Scholar 

  16. Bogdanski S (2002) The behaviour of kinked cracks in contact. In: Proceedings of 14th bienniel conference on fracture “Fracture mechanics beyond” (ECF 14), vol I/III. EMAS Publishing, pp 289–296

    Google Scholar 

  17. Bogdanski S, Olzak M, Stupnicki J (1996) Numerical stress analysis of rail rolling contact fatigue cracks. Wear 191:4–24

    Article  Google Scholar 

  18. Bogdanski S, Trajer M (2005) A dimensionless multi-size finite element model of a rolling contact fatigue crack. Wear 258:1265–1272

    Article  Google Scholar 

  19. Bold PE, Brown MW, Allen RJ (1991) Shear mode crack growth and rolling contact fatigue. Wear 144:307–317

    Article  Google Scholar 

  20. Bowden FP, Tabor D (1964) The friction and lubrication of solids. Clarendon Press, Oxford

    MATH  Google Scholar 

  21. Bower AF (1988) The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks. J Tribol Trans ASME 110(4): 704–711

    Article  Google Scholar 

  22. Cannon DF, Edel KO, Grassie SL, Sawley K (2003) Rail defects: an overview. Fatigue Fract Eng Mater Struct 26(10):865–886

    Article  Google Scholar 

  23. Carpinteri A (ed) (1994) Handbook of fracture crack propagation in metallic structures (in 2 volumes). Elsevier, Amsterdam

    Google Scholar 

  24. Cattaneo C (1938) Sur contatto di due corpi elatici: distribuzione locate degli sforzi, Rend. dell Academia nazionale dei lincei, 27(Ser 6): 342, 434, 474

    Google Scholar 

  25. Chang F-K, Comninou M, Sheppard S, Barber JR (1984) The subsurface crack under conditions of slip and stick caused by a surface normal force. J Appl Mech 51:311–316

    Article  Google Scholar 

  26. Cherepanov GP (1974) Mekhanika khrupkogo razrusheniya (Mechanics of brittle fracture). Nauka, Moscow

    Google Scholar 

  27. Clayton P, Su X (1996) Surface initiated fatigue of pearlitic and bainitic steels under water lubricated rolling/sliding contact. Wear 200:63–73

    Article  Google Scholar 

  28. Datsishin OP, Marchenko GP, Panasyuk VV (1993) Theory of crack growth in rolling contact. Mater Sci 29(4):373–383

    Article  Google Scholar 

  29. Datsyshin AP, Marchenko GP (1985) An edge curvilinear crack in an elastic half plane. Sov Mater Sci 21(1):66–70

    Article  Google Scholar 

  30. Datsyshin AP, Marchenko GP (1985) Interaction of curvilinear cracks with the boundary of an elastic half plane. Sov Mater Sci 20(5):466–473

    Article  Google Scholar 

  31. Datsyshin AP, Savruk MP (1973) A system of arbitrarily oriented cracks in elastic solids. J Appl Math Mech 37(2):306–313

    Article  MATH  Google Scholar 

  32. Datsyshin AP, Savruk MP (1974) Integral equations of the plane problem of crack theory. J Appl Math Mech 38(4):677–686

    Article  MATH  Google Scholar 

  33. Datsyshyn OP (1999) Durability and fracture calculate model for structural materials under fretting fatigue. Naukovyy Visnyk Ukrauinskogo Derzhavnogo Lisotekhnichnogo Universytetu 9:139–149

    Google Scholar 

  34. Datsyshyn OP (2000) Fatigue fracture of calculation model of solids under their contact interaction. Naukovi Notatky Luts’kogo Derzhavnogo Universytetu 7:74–78

    Google Scholar 

  35. Datsyshyn OP (2009) Modeling of the development of typical contact fatigue defects in rolling bodies. In: Panasyuk VV (ed) Mekhanika ruynuvannya materialiv ta mitsnist` konstruktsiy (Fracture Mechanics of Materials and Strength of Structures). Proceedings of the 4th international scientific conference. Lviv, pp 49–54

    Google Scholar 

  36. Datsyshyn OP (2011) Modeling of the initiation of contact fatigue damages and estimation of the durability of elements of tribological conjunctions. Mater Sci 47(2):188–200

    Article  Google Scholar 

  37. Datsyshyn OP (2005) Service life and fracture of solid bodies under the conditions of cyclic contact interaction. Mater Sci 41(6):709–733

    Article  Google Scholar 

  38. Datsyshyn OP, Glazov AY (2013) Rolling bodies durability evaluation by formation of typical contact fatigue damages—pitting and spalling. Visnyk Ternopil`skogo Natsional`nogo Tekhnichnogo Universytetu, vol 3, pp 75–87

    Google Scholar 

  39. Datsyshyn OP, Hlazov AY, Levus AB (2014) Specific features of contact of the faces of an edge crack under moving hertzian loads. Mater Sci 49(5):589–601

    Article  Google Scholar 

  40. Datsyshyn OP, Kadyra VM (2006) Development of edge cracks under fretting fatigue under stick–slip conditions in contact between the bodies, vol 3. Mashynoznavstvo, pp 9–15

    Google Scholar 

  41. Datsyshyn OP, Kalakhan OS, Kadyra VM, Shchur RB (2004) Pitting formation under the conditions of fretting fatigue. Mater Sci 40(2):159–172

    Article  Google Scholar 

  42. Datsyshyn OP, Kopyletst MM (2002) The development of a subsurface crack during rolling under dry friction conditions, vol 8. Mashynoznavstvo, pp 17–23 (2002)

    Google Scholar 

  43. Datsyshyn OP, Kopyletst MM (2003) On spalling of a rolling surface, vol 10. Mashynoznavstvo, pp 15–18 (2003)

    Google Scholar 

  44. Datsyshyn OP, Kopylets MM (2003) Prediction of the service life of rolling bodies according to the development of a subsurface crack. Mater Sci 39(6): 765–779

    Article  Google Scholar 

  45. Datsyshyn OP, Levus AB (2003) Propagation of an edge crack under the pressure of liquid in the vicinity of the crack tip. Mater Sci 39(5):754–757

    Article  Google Scholar 

  46. Datsyshyn OP, Levus AB (2000) Stress intensity factors for system of parallel surface cracks in half-plane due to hertzian load on its boundary, vol 11. Mashynoznavstvo, pp 9–15

    Google Scholar 

  47. Datsyshyn OP, Marchenko HP (2002) Calculation of the rolling surface durability at the stage of shear mode growth of edge cracks. In: Troshchenko VT (ed) “Trybofatyka” (“Tribofatigue”), Proceedings of the 4th international symposium on tribofatigue (ISTF 4), vol 1. Ternopil, pp 420–425

    Google Scholar 

  48. Datsyshyn OP, Marchenko HP (1995) Crack propagation path and residual durability of solids under rolling contact. In: Aliabadi MH, Alessandri C (eds) Contact mechanics II. Computational techniques. Computational Mechanics Publications Southampton, Boston, pp 377–383

    Google Scholar 

  49. Datsyshyn OP, Marchenko HP (2012) Evaluation of the influence of residual stresses on the surface fracture of railroad rails, vol 6. Zaliznychnyy Transport Ukrainy, pp 38–41

    Google Scholar 

  50. Datsyshyn OP, Marchenko HP (2003) Estimation of mode II surface crack growth period under rolling contact, vol 7. Mashynoznavstvo, pp 17–23

    Google Scholar 

  51. Datsyshyn OP, Marchenko HP (2008) Stressed state of a half plane with shallow edge crack under Hertzian loading (a survey). Mater Sci 44(1):22–34

    Article  Google Scholar 

  52. Datsyshyn OP, Marchenko HP, Glazov AY (2019) On the special angle of surface cracks propagation in the railway rail heads. Eng Fract Mech 206:452–462

    Article  Google Scholar 

  53. Datsyshyn OP, Marchenko HP, Hlazov AY, Levus AB (2015) Influence of compressive stresses on the propagation of surface shear cracks in railroad rails. Mater Sci 51(2):235–243

    Article  Google Scholar 

  54. Datsyshyn OP, Marchenko HP, Kravchuk OA (2016) Sear surface cracks and longitudinal residual stresses in railway rail head, vol 3–4. Zaliznychnyy Transport Ukrainy, pp 53–59

    Google Scholar 

  55. Datsyshyn OP, Marchenko HP, Levus AB (2004) On the methodology of durability calculation at near-threshold parts of fatigue cracks growth. In: Panasyuk VV (ed) Mekhanika ruynuvannya materialiv ta mitsnist` konstruktsiy (Fracture mechanics of materials and strength of structures). Lviv, pp 107–112

    Google Scholar 

  56. Datsyshyn OP, Panasyuk VV (1996) Durability and fracture calculational model of solids under their contact interaction. In: Petit J (ed) ECF-11, vol II. Mechanism and mechanics of damage and failure. EMAS LTD, Warley, pp 1381–1386

    Google Scholar 

  57. Datsyshyn OP, Panasyuk VV (2001) Pitting of the rolling bodies contact surface. Wear 251:1347–1355

    Article  Google Scholar 

  58. Datsyshyn OP, Panasyuk VV, Glazov AY (2011) Modelling of fatigue contact damages formation in rolling bodies and assesment of their durability. Wear 271(1–2):186–194

    Article  Google Scholar 

  59. Datsyshyn OP, Panasyuk VV, Glazov AY (2009) The model of fatigue contact damages formation in rolling bodies and estimation of their durability. In: Proceedings of the 8th international conference on contact mechanics and wear of rail/wheel systems, vol 1. AB Editore, Firenze, pp 35–43

    Google Scholar 

  60. Datsyshyn OP, Panasyuk VV, Glazov AY (2016) The model of the residual lifetime estimation of trybojoint elements by formation criteria of the typical contact fatigue damages. Int J Fatigue 83(2):300–312

    Article  Google Scholar 

  61. Datsyshyn OP, Panasyuk VV, Pryshlyak RE, Terlets’kyi AB (2001) Paths of edge cracks in rolling bodies under the conditions of boundary lubrication. Mater Sci 37(3), 363–373

    Google Scholar 

  62. Datsyshyn OP, Shchur RB (1998) Development of edge cracks under conditions of fretting fatigue. Probl Tribol 2: 7–16

    Google Scholar 

  63. Datsyshyn OP, Tkachov VI, Hlazov AY, Khrunyk RA (2006) Prediction of the contact durability of back-up rolls of forge-rolling mills in the process of development of pitting. Mater Sci 42(6):823–836

    Article  Google Scholar 

  64. Donzella G, Faccoli M, Ghidini A, Mazzu A, Roberti R (2005) The competitive role of wear and RCF in rail steel. Eng Fract Mech 72:287–308

    Article  Google Scholar 

  65. Dubourg MC, Villechaise B (1992) Stress intensity factors in a bent crack: a model. Eur J Mech A/Solids 11(2): 169–179

    Google Scholar 

  66. Ekberg A (2009) Fatigue of railway wheels, In: Lewis R, Olofsson U (eds) Wheel-rail interface handbook. Woodhead Publishing, pp 211–244

    Google Scholar 

  67. Ekberg A, Åkesson B, Kabo E (2014) Wheel/rail rolling contact fatigue—Probe, predict, prevent. Wear 314(1–2):2–12

    Article  Google Scholar 

  68. Ekberg A, Kabo E (2005) Fatigue of railway wheels and rail under rolling contact and thermal loading—an overview. Wear 258:1288–1300

    Article  Google Scholar 

  69. Ekberg A, Kabo E, Åkesson B (2002) An engineering model for prediction of rolling contact fatigue of railway wheels. Fatigue Fract Eng Mater Struct 25:899–909

    Article  Google Scholar 

  70. Fajdiga G, Flašker J, Glodež S, Hellen TK (2003) Numerical modeling of micropitting of gear teeth flanks. Fatigue Fract Eng Mater Struct 26(12):1135–1143

    Article  Google Scholar 

  71. Fehlbeck DK, Orowan EO (1955) Energy criteria of fracture. Weld J Res Suppl 34:157–160

    Google Scholar 

  72. Flašker J, Fajdiga G, Glodež S, Hellen TK (2001) Numerical simulation of surface pitting due to contact loading. Int J Fatigue 23:599–605

    Article  Google Scholar 

  73. Fleming JR, Suh NP (1977) Mechanics of crack propagation in delamination wear. Wear 44(1):39–56

    Article  Google Scholar 

  74. Fletcher DI, Beynon JH (1999) A simple method of stress intensity factors calculation for inclined surface-breaking crack with crack face friction under contact loading. Proc Inst Mech Engrs Part J J Eng Tribol 213: 481–486

    Article  Google Scholar 

  75. Fletcher DI, Franklin FJ, Kapoor A (2003) Image analysis to reveal crack development using a computer simulation of wear and rolling contact fatigue. Fatigue Fract Eng Mater Struct 25(10):957–967

    Article  Google Scholar 

  76. Fletcher DI, Franklin FJ, Kapoor A (2009) Rail surface fatigue and wear. In: Lewis R, Olofsson U (eds) Wheel-rail interface handbook. Woodhead Publishing, pp 280–310

    Google Scholar 

  77. Fletcher DI, Smith L, Kapoor A (2009) Rail rolling contact fatigue dependence on friction, predicted using fracture mechanics with a three-dimensional boundary element model. Eng Fract Mech 76:2612–2625

    Article  Google Scholar 

  78. Fridman YB (1974) Mekhanicheskiye svoistva materialov (Mechanical properties of materials), vol 1, vol 2. Mashinostroenie, Moscow

    Google Scholar 

  79. Frolish MF, Fletcher DI, Beynon JH (2002) A quantitative model for predicting the morphology of surface initiated rolling contact fatigue cracks in back-up roll steels. Fatigue Fract Eng Mater Struct 25:1073–1086

    Article  Google Scholar 

  80. Glodež S, Flasker J, Ren Z (1997) A new method for the numerical determination of pitting resistance of gear teeth flanks. Fatigue Fract Eng Mater Struct 20(1):71–83

    Article  Google Scholar 

  81. Goshima T (2003) Thermomechanical effects on crack propagation in rolling contact fatigue failure. J Therm Stress 26:615–639

    Article  Google Scholar 

  82. Griffith AA (1921) The phenomena of rupture and flow in solids. Phil Trans R Soc Lond 1(ser A), 221: 163–198

    Google Scholar 

  83. Griffith AA (1924) The theory of rupture. In: Proceedings of 1st international congress. Delft, pp 53–63

    Google Scholar 

  84. Grilitskyi ND, Kit GS (1978) On the stressed state in the vicinity of a crack with partial contact of the faces. Matematicheskiye Metody i Fiziko-Mekhanicheskiye Polya, vol 8, pp 35–39

    Google Scholar 

  85. Grylits’kyi DV, Lutsyshyn RM (1975) Napruzhennya v plastynkakh z kolovoyu liniyeyu rozmezhuvannya granychnykh umov (Stresses in plates with a circular line of separation of the boundary conditions). Vyshcha Shkola, Lviv

    Google Scholar 

  86. Guagliano M, Vergani L (2005) Experimental and numerical analysis of sub-surface cracks in railway wheels. Eng Fract Mech 72(2):255–269

    Article  Google Scholar 

  87. Hattori T, Kien VT, Yamashita M (2011) Fretting fatigue life estimations based on fretting mechanisms. Tribol Int 44:1389–1393

    Article  Google Scholar 

  88. Hearly AD, Johnson KL (1985) Mode II stress intensity factors for a crack parallel to the surface of an elastic half-space subjected to a moving point load. J Mech Phys Solids 33(1):61–81

    Article  Google Scholar 

  89. Hebda M, Chichinadze AV (eds) (1989) Spravochnik po tribotekhnike (A handbook of tribology). Mashinostroenie–VKL, Moscow–Warsaw

    Google Scholar 

  90. Hills DA, Ashelby DW (1980) On the application of fracture mechanics to wear. Wear 54:321–330

    Article  Google Scholar 

  91. Hills DA, Nowell D (1994) Mechanics of fretting fatigue. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  92. Hojjati-Talemi R, Wahab MA, Pauw JD, Baets PD (2014) Prediction of fretting fatigue crack initiation and propagation lifetime for cylindrical contact configuration. Tribol Int 76:73–91

    Article  Google Scholar 

  93. Holmberg К (2001) Tribology in reliability engineering. In: Franek F, Bartz WJ, Pauschitz A (eds) Trybology 2001: scientific achievements, industrial applications, future challenges, Plenary and session key papers from the 2-nd world tribology congress (WTC–2001), Vienna. pp 13–19

    Google Scholar 

  94. Ichimaru K, Nakajima A, Hirano F (1981) Effect of asperity interaction on pitting in rollers and gears. J Mech Design 103:482–491

    Article  Google Scholar 

  95. Ioakimidis NI (1997) Conditions for contact/lack of contact along a loaded simple straight crack in plane isotropic elasticity. Eng Fract Mech 56(5):675–689

    Article  Google Scholar 

  96. Ioakimidis NI, Theocaris PS (1979) A system of curvilinear cracks in an isotropic elastic half-plane. Int J Fract 15(4):299–309

    MathSciNet  Google Scholar 

  97. Irwin GR (1957) Analysis of stress and strain near and of a crack traversing a plate. J Appl Mech 24(3):361–364

    Google Scholar 

  98. Ishida M, Akama M, Kashiwaya K, Kapoor A (2003) The current status of theory and practice on rail integrity in Japanese railway—rolling contact fatigue and corrugations. Fatigue Fract Eng Mater Struct 26(10):909–919

    Article  Google Scholar 

  99. Ivanova VS, Terent’ev VF (1975) Priroda ustalosti metallov (Nature of the fatigue of metals), Metallurgiya, Moscow

    Google Scholar 

  100. Ivanyts’kyi YL, Shtayura S (2004) Methodical guidelines. Determination of the characteristics of crack-growth resistance of materials under the conditions of complex stressed state (normal opening + transverse shear and normal fracture + longitudinal shear. In: Panasyuk VV (ed) Mekhanika ruynuvannya materialiv ta mitsnist` konstruktsiy (Fracture mechanics of materials and strength of structures). Lviv, pp 723–732

    Google Scholar 

  101. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  102. Kaneta M, Matsuda K, Murakami Y, Nishikawa H (1998) A possible mechanism for rail dark spot defects. Trans ASME J Tribol 120: 304–309

    Article  Google Scholar 

  103. Kaneta M, Murakami Y (1987) Effects of oil hydraulic pressure on surface crack growth in rolling/sliding contact. Tribol Int 20(4):210–217

    Article  Google Scholar 

  104. Kaneta M, Murakami Y (1991) Propagation of semi-elliptical surface crack in lubricated rolling/sliding elliptical contact. J Trib ASME 113:270–275

    Article  Google Scholar 

  105. Kaneta M, Yatsuzuka H, Murakami Y (1985) Mechanism of crack growth in lubricated rolling/sliding contact. ASLE Trans 28(3):407–414

    Article  Google Scholar 

  106. Kapadia BM, Marsden KW (1997) Spalling behaviour of back-up roll materials. In: 39th MSWP conference, pp 1–38

    Google Scholar 

  107. Kashimura H, Tsushima N (1984) Improvement of rolling contact fatigue life of bearing steels. SAE technical paper series 84123, pp 1–9

    Google Scholar 

  108. Keer LM, Bryant MD (1983) A pitting model for rolling contact fatigue. Trans ASME J Lubric Technol 105(2):198–205

    Article  Google Scholar 

  109. Keer LM, Bryant MD, Haritos GK (1982) Subsurface and surface cracking due to hertzian contact. Trans ASME J Lubric Technol 104(3):347–351

    Article  Google Scholar 

  110. Kit GS, Krivtsun MG (1983) Ploskiye zadachi termouprugosti dlya tel s treshchinami (Plane problems of thermoelasticity for bodies with cracks). Naukova Dumka, Kiev

    MATH  Google Scholar 

  111. Kolesnikov YV, Morozov EM (1989) Mekhanika kontaktnogo razrusheniya (Mechanics of contact fracture). Nauka, Moscow

    Google Scholar 

  112. Kolosov GV (1935) Primeneniye kompleksnoy peremennoy k teorii uprugosti (Application of complex variable to the theory of elasticity). ONTI Moscow–Leningrad

    Google Scholar 

  113. Komvopoulos K (1996) Subsurface crack mechanisms under indentation loading. Wear 199:9–23

    Article  Google Scholar 

  114. Komvopoulos K, Cho S-S (1997) Finite element analysis of subsurface crack propagation in a half-space due to a moving asperity contact. Wear 209:57–68

    Article  Google Scholar 

  115. Kostetskii BI (1959) Soprotivlyeniye iznashivaniyu detaley mashin (Resistance to wear process of machine parts). Mashgiz, Moscow–Kiev, p 478

    Google Scholar 

  116. Kostetskii BI, Nosovskii IG, Karaulov AK, Bershadskii LI et al (1976) Poverkhnostnaya prochnost` materialov pri trenii (Surface strength of materials in friction). Tekhnika, Kiev

    Google Scholar 

  117. Kragel’skii IV, Dobychin MN, Kombalov VS (1977) Osnovy raschetov na treniye i iznos (Fundamentals of the numerical analyses of friction and wear). Mashinostroenie, Moscow

    Google Scholar 

  118. Kudish II (1989) Numerical analysis of wear and fatigue crumbling in rolling bearings: a survey [in Russian], Series X—“Bearing industry”. Central research institute of information and techniko-economical investigations of the automotive industry, Moscow

    Google Scholar 

  119. Kudish II, Burris KW (2000) Modern state of experimentation and modeling in contact fatigue phenomenon: Part I—Contact fatigue. Normal and tangential contact and residual stresses. Nonmetallic inclusions and lubricant contamination. Crack initiation and crack propagation. Surface and subsurface cracks. Tribol Trans 43(2): 187–196

    Article  Google Scholar 

  120. Kuz’menko AG (1997) Wear as a process of initiation and propagation of cracks. Probl Tribol 1, 46–64

    Google Scholar 

  121. Lansler E, Kabo E (2005) Subsurface crack face displacements in railway wheels. Wear 258:1038–1047

    Article  Google Scholar 

  122. Lenkovs’kyi TM (2014) Determination of the characteristics of cyclic crack resistance of steels under transverse shear (a survey). Mater Sci 50(3): 340–349

    Article  Google Scholar 

  123. Levus AB (2007) Kinetics of contact of the crack faces in rolling. In: Proceedings of the conference “Problemy koroziyno-mekhanichnogo ruynuvannya, inzheneriya poverhni, diagnostychni systemy” (“Problems of corrosion-mechanical fracture, surface engineering, and diagnostic systems”). Lviv, pp 79–82

    Google Scholar 

  124. Levus AB, Glazov AY, Datsyshyn OP (2008) Contact of edge crack faces under moving hertzian contact load. In: Suchasni problemy mekhaniky ta matematyky (Modern problems of mechanics and mathematics). Proceedings of the 2nd International Science Conference, vol 2. Lviv, pp 56–59

    Google Scholar 

  125. Li YC (1994) Analysis of fatigue phenomena in railway rails and wheels. In: Carpinteri A (ed) Handbook of fatigue crack propagation in metallic structures, vol 2. Elsevier Science Ltd, Oxford, pp 1497–1537

    Chapter  Google Scholar 

  126. Lin’kov AM (1999) Kompleksnyy metod granichnykh integralnykh uravneniy teorii uprugosti (Complex method of boundary integral equations of the theory of elasticity). Nauka, St. Petersburg

    Google Scholar 

  127. Lundberg G, Palmgren A (1947) Dynamic capacity of rolling bearing. Acta Polytech Ser Mech Eng RSAEE 1(3): 50

    Google Scholar 

  128. Lunden R (2007) Elastoplastic modeling of subsurface crack growth in rail/wheel contact problems. Fatigue Fract Eng Mater Struct 30:905–914

    Article  Google Scholar 

  129. Lunden R, Paulsson B (2009) Introduction to wheel-rail interface research. In: Lewis R, Olofsson U (eds) Wheel-rail interface handbook. Woodhead Publishing, pp 3–33

    Google Scholar 

  130. Mei B, Li Y, Wang C, Dou P (2002) Rolling contact fatigue crack initiation in medium carbon bainitic steel. J Tsinghua Univ Sci Tech 42(12), 1569–1575

    Google Scholar 

  131. Miller KJ (2001) Structural integrity—whose responsibility? The 36th John Player memorial lecture presented at an ordinary meeting of the institution of mechanical engineers. Institution of Mechanical Engineers, London

    Google Scholar 

  132. Morozov EM, Nikishkov GP (1980) Metod konechnykh elementov v mekhanike razrusheniya (Finite-element method in fracture mechanics). Nauka, Moscow

    MATH  Google Scholar 

  133. Morozov EM, Zernin MB (1999) Kontaktnyye zadachi mehaniki razrusheniya (Contact problems of fracture mechanics). Mashinostroenie, Moscow

    Google Scholar 

  134. Murakami Y (1986) Stress intensity factors handbook. Pergamon Press, Oxford

    Google Scholar 

  135. Murakami Y, Kaneta M (1989) Fracture-mechanics approach to tribology problems. In: Wei RP, Gangloff RP (eds) Twentieth Sympos. “Fracture mechanics: perspectives and directions”, ASTM STP 1020. American Society for Testing and Materials, Philadelphia, pp 668–687

    Google Scholar 

  136. Murakami Y, Kaneta M, Yatsuzuka H (1985) Analysis of surface crack propagation in lubricated rolling contact. ASLE Trans 28(1):60–68

    Article  Google Scholar 

  137. Murakami Y, Sakae C, Hamada S (1999) Mechanism of rolling contact fatigue and measurement of ∆KIIth for steels. In: Beynon JH, Brown MW, Lindley et al (eds) Engineering against fatigue. A. A. Balkema Publishers, Rotterdam, pp 473–485

    Google Scholar 

  138. Murakami Y, Sakae C, Ichimaru K, Morita T (1997) Experimental and fracture mechanics study of the pit formation mechanism under repeated lubricated rolling/sliding contacts: effects of reversal of rotation and change of the driving roller. Trans ASME J Tribol 119:788–796

    Article  Google Scholar 

  139. Muskhelishvili NI (1966) Nekotoryye osnovnyye zadachi matematicheskoy teorii uprugosti (Some basic problems of the mathematical theory of elasticity). Nauka, Moscow

    Google Scholar 

  140. Nayak L, Paul K (1979) Contact fatigue failure of rolls of hot strip mill. Indian J Technol 17:27–34

    Google Scholar 

  141. Neu RW (2011) Progress in standartization on fretting fatigue terminology and testing. Tribol Int 44:1371–1377

    Article  Google Scholar 

  142. Noda N-A, Yagishita M, Kihara T (2000) Effect of crack shape, inclination angle, and friction coefficient in crack surface contact problems. Int J Fract 105:367–389

    Article  Google Scholar 

  143. Ohkomori Y, Kitagawa I, Shinozuka K et al (1987) Cause and prevention of spalling of back-up rolls for hot strip mill. Tetsu- to Hagane 73:691–697

    Google Scholar 

  144. Ohkomori Y, Sakae C, Murakami Y (2000) Mode II crack growth analysis of spalling behaviour for strip mill back-up roll. In: 42nd MSWP conference. Proceedings of the ISS, 2000, vol XXXVIII, pp 723–729

    Google Scholar 

  145. Opanasovich VK, Kundrat NM (1980) Elastic equilibrium of a plate, the edges of which are partially in contact. Sov Mater Sci 15(6):611–614

    Article  Google Scholar 

  146. O’Regan SD, Hahn GT, Rubin CA (1985) The driving force mode II crack growth under rolling contact. Wear 101:333–346

    Article  Google Scholar 

  147. Orringer O, Morris JM, Steele RK (1984) Applied research on rail fatigue and fracture in the United States. Theor Appl Fract Mech 1:23–49

    Article  Google Scholar 

  148. Ostash OP (2015) Struktura materialiv i vtomna dovgovichnist elementiv konstrukciy (Structure of materials and fatigue durability of structural elements). In: Panasyuk VV (ed) Fracture mechanics and strength of materials, vol 15. SPOLOM, Lviv

    Google Scholar 

  149. Panasyuk VV (1991) Mekhanika kvazikhrupkogo razrusheniya materialov (Mechanics of brittle fracture of materials). Naukova Dumka, Kiev

    Google Scholar 

  150. Panasyuk VV, Andreikiv AE, Parton VZ (1988) Osnovy mekhaniki razrusheniya materialov (Fundamentals of the fracture mechanics of materials). In: Fracture mechanics and strength of materials: a handbook, vol 1. Naukova Dumka, Kiev

    Google Scholar 

  151. Panasyuk VV, Datsyshin AP (1974) The equilibrium limit of a half plane with an arbitrarily oriented crack at its boundary. Sov Mater Sci 7(6):751–752

    Article  Google Scholar 

  152. Panasyuk VV, Datsyshyn OP (2014) Material damages and life time of solids under a cyclic contact. Procedia Mater Sci 3:1250–1256

    Article  Google Scholar 

  153. Panasyuk VV, Datsyshyn OP, Glazov AY (2007) Prediction of the contact durability of rails by pitting development, vol 3. Mashynoznavstvo, pp 3–10

    Google Scholar 

  154. Panasyuk VV, Datsyshyn OP, Levus AB (2002) Evolution of a system of edge cracks in the region of rolling bodies cyclic contact. In: Neimitz A et al (eds) ECF-14, Fracture mechanics, V. I/III, Beyond 2000. EMAS Publishing, Sheffield, pp 609–616

    Google Scholar 

  155. Panasyuk VV, Datsyshyn OP, Marchenko HP (1996) Contact problem for a half plane with cracks subjected to the action of a rigid punch on its boundary. Mater Sci 31(6):667–678

    Article  Google Scholar 

  156. Panasyuk VV, Datsyshyn OP, Marchenko HP (2001) Crack growth in rolling bodies under the conditions of dry friction and wetting. Mater Sci 37(1):1–11

    Article  Google Scholar 

  157. Panasyuk VV, Datsyshyn OP, Marchenko HP (2000) Stress state of a half-plane with cracks under rigid punch action. Int J Fract 101(4):347–364

    Article  Google Scholar 

  158. Panasyuk VV, Datsyshyn OP, Marchenko HP (1995) To crack propagation theory under rolling contact. Eng Fract Mech 52(1):179–191

    Article  Google Scholar 

  159. Panasyuk VV, Datsyshyn OP, Shchur RB (2000) Residual durability of solids contacting under conditions of fretting fatigue. Mater Sci 36(2):153–169

    Article  Google Scholar 

  160. Panasyuk VV, Savruk MP, Datsyshin AP (1977) Application of singular integral equations to the solution of two-dimensional problems in crack theory. Sov Mater Sci 12(3):245–259

    Article  Google Scholar 

  161. Panasyuk VV, Savruk MP, Datsyshyn AP (1976) Raspredeleniye napryazheniy okolo treshchin v plastinakh i obolochkakh (Distribution of stresses near cracks in plates and shells). Naukova Dumka, Kiev

    Google Scholar 

  162. Panasyuk VV, Savruk MP, Datsyshyn AP (1977) A general method of solution of two-dimensional problems in the theory of cracks. Eng Fract Mech 9(2):481–497

    Article  Google Scholar 

  163. Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. Trans ASME J Basic Eng 85(4):528–534

    Article  Google Scholar 

  164. Paris PC, Gomes MP, Anderson WE (1961) A rational analytic theory of fatigue. Trend Eng 13:54–61

    Google Scholar 

  165. Paris PC, Sih GC (1965) Stress analysis of cracks. In: Fracture toughness testing and its applications. ASTM–NASA, Philadelphia, pp 30–83

    Google Scholar 

  166. Peng JF, Zhu MH, Cai ZB, Liu JH et al (2014) On the damage mechanisms of bending fretting fatigue. Tribol Int 76:133–141

    Article  Google Scholar 

  167. Pinegin SV (1969) Kontaktnaya prochnost` i soprotivleniye kacheniyu (Contact strength and rolling resistance). Mashinostroenie, Moscow

    Google Scholar 

  168. Pisarenko GS, Lebedev AA (1976) Deformirovaniye i prochnost` materialov pri slozhnom napryazhennom sostoyanii (Deformation and strength of materials in the complex stressed state). Naukova Dumka, Kiev

    Google Scholar 

  169. Polukhin VP, Nikolaev VA, Tylkin MA et al (eds) (1976) Nadezhnost` i dolgovechnost` valkov kholodnoy prokatki (Reliability and durability of cold-rolled rolls). Metallurgiya, Moscow

    Google Scholar 

  170. RD 50-345-82 (1983) Metodologicheskiye ukazaniya. Raschety i ispytaniya na prochnost`. Metody mekhanicheskikh ispytaniy metalov. Opredeleniye kharasteristik treshchinostoykosti (vyazkosti razrusheniya) pri tsiklicheskom nagruzhenii (Methodical recommendations. Strength analyses and tests. Methods for mechanical testing of metals. Determination of the crack-growth resistance characteristics (fracture toughness) under cyclic loading). Izdatel`stvo Standartov, Moscow

    Google Scholar 

  171. Ritchie RO (1984) Threshold for fatigue crack propagation: questions and anomalies. In: Advances in fracture research. Proceedings of 6th international conference on fracture. Pergamon press, Oxford, pp 235–260

    Chapter  Google Scholar 

  172. Ringsberg JW (2005) Shear mode growth of short surface-breaking RCF cracks. Wear 258:955–963

    Article  Google Scholar 

  173. Ringsberg JW, Bergkvist A (2003) On propagation of short rolling contact fatigue cracks. Fatigue Fract Eng Mater Struct 26(10):969–983

    Article  Google Scholar 

  174. Romaniv ON, Yarema SY, Nikiforchin GN, Makhutov NA, Stadnik MM (1990) Ustalost` i ciclicheskaya treshchinostoykost` konstrukcionnyh materialov (Fatigue and cyclic crack resistance of structural materials). In: Panasyuk VV (ed) Fracture mechanics and strength of materials: a handbook, vol 4. Naukova Dumka, Kiev

    Google Scholar 

  175. Rooke DP, Cartwright DJ (1976) The compendium of stress intensity factors. Her Majesty’s Stationery Office, London

    Google Scholar 

  176. Rooke DP, Jones DA (1979) Stress intensity factors in fretting fatigue. J Strain Anal 14(1):1–6

    Article  Google Scholar 

  177. Rosenfield AR (1980) Fracture mechanics approach to wear. Wear 61:125–132

    Article  Google Scholar 

  178. Salehizaden H, Saka N (1992) Crack propagation in rolling line contacts. J Tribol 114:690–697

    Article  Google Scholar 

  179. Sato M, Anderson PM, Rigney DA (1993) Rolling-sliding behavior of rail steels. Wear 162–164:159–172

    Article  Google Scholar 

  180. Savruk MP (1988) Koefficienty intensivnosti napryazheniy v telakh s treshchinami (Stress intensity factors in bodies with cracks). In: Panasyuk VV (ed) Fracture mechanics and strength of materials: a handbook, vol 2. Naukova Dumka, Kiev

    Google Scholar 

  181. Savruk MP (1981) Dvumernyye zadachi uprugosti dlya tel s treshchinsmi (Two-dimensional problems of elasticity for bodies with cracks). Naukova Dumka, Kiev

    MATH  Google Scholar 

  182. Savruk MP, Datsyshin AP (1974) Interaction between a system of cracks and the boundaries of an elastic body. Sov Appl Mech 10(7):755–761

    Article  MATH  Google Scholar 

  183. Savruk MP, Datsyshin AP (1972) Limiting equilibrium state of a body weakened by a system of randomly oriented cracks. Termomekhanicheskiye metody razrusheniya gornykh porod (Thermomechanical methods of fracture of rocks). Part 2. Naukova Dumka, Kiev, pp 97–102

    Google Scholar 

  184. Savruk MP, Prokopchuk IV, Osiv PN (1989) Chislennyy analiz v ploskikh zadachah teorii treshchin (Numerical analysis in plane problems of the theory of cracks). Naukova Dumka, Kiev

    Google Scholar 

  185. Savruk MP, Tomczyk A (2010) Pressure with friction of a perfectly rigid die upon an elastic half space with cracks. Mater Sci 46(3):283–296

    Article  Google Scholar 

  186. Sheppard SD, Barber JR, Comninou M (1985) Short subsurface cracks under conditions of slip and stick caused by a moving compressive load. J Appl Mech 52:811–817

    Article  Google Scholar 

  187. Sheppard SD, Barber JR, Comninou M (1987) Subsurface cracks under conditions of slip, stick, and separation caused by a moving compressive load. Trans ASME J Appl Mech 54(2):393–398

    Article  Google Scholar 

  188. Shiratori M, Miyoshi T, Matsushita H (1986) Vycheslitel`naya mekhanika razrusheniya (Computational fracture mechanics). Mir, Moscow

    Google Scholar 

  189. Shur E (1971) Povrezhdeniye rel`sov (Damage of rails). Transport, Moscow

    Google Scholar 

  190. Sih GC (1974) Handbook of stress intensity factors, vol 1. Lehigh University Press, Bethlehem, p 420 (1973, vol 2, p 406)

    Google Scholar 

  191. Smith RA (2003) The wheel-rail interface–some recent accidents. Fatigue Fract Eng Mater Struct 26(10):901–907

    Article  Google Scholar 

  192. Sosnovskii LA (2002) Fundamentals of the mechanics of wear-fatigue damage and fracture. In: Troshchenko VT (ed) “Trybofatyka” (“Tribofatigue”), Proceedings of the 4th international symposium on tribofatigue (ISTF 4), vol 1, pp 9–22, Ternopil

    Google Scholar 

  193. Sosnovskii LA, Makhutov NA, Shurinov VA (1992) Contact-mechanical fatigue: basic regularities, vol 11. Zavodskaya Laboratoriya, pp 44–61

    Google Scholar 

  194. Sosnovskii LA, Makhutov NA, Shurinov VA (1992) Fretting fatigue: basic regularities, vol 8. Zavodskaya Laboratoriya, pp 45–62

    Google Scholar 

  195. Sosnovskii LA, Makhutov NA, Shurinov VA (1992) Friction-mechanical fatigue: basic regularities, vol 9. Zavodskaya Laboratoriya, pp 46–63

    Google Scholar 

  196. Stadnyk MM, Didukh IV (2010) Evaluation of the durability of pipe elements in the stage of growth of a semielliptic fatigue surface crack. Visnyk Lvivs`kogo Natsional`nogo Universytetu im. I.Franka, Ser. Mekhanika-Matematyka, vol 73, pp 23–29

    Google Scholar 

  197. Stock R, Stanlake L, Hardwick C, Yu M et al (2016) Material concepts for top of rail friction management—classification, characterization and application. Wear 366–367:225–232

    Article  Google Scholar 

  198. Su X, Clayton P (1996) Surface-initiated rolling contact fatigue of pearlitic and low carbon bainitic steels. Wear 197:137–144

    Article  Google Scholar 

  199. Suh NP (1977) An overview of the delamination theory of wear. Wear 44:1–16

    Article  Google Scholar 

  200. Tada H, Paris PC, Irwin GR (1985) The stress analysis of cracks: handbook. Del Research Corporation, St. Louis

    Google Scholar 

  201. Tait WH (1990) Roll shop. Part 1: The nature and causes of in service defects, Rolls for the metalworking industries. ISS, pp 35–149

    Google Scholar 

  202. Tallian TE (1988) Influence of the properties of materials and operating conditions on the durability of rolling bearings. Part 1. Description of a model and calculation of the basic durability. Part 2. Correction coefficients. Problemy Treniya i Smazki, vol 4, pp 1–13

    Google Scholar 

  203. Taylor D (1985) A compendium of fatigue thresholds and growth rates. Engineering Materials Advisory Services Ltd, Warley

    Google Scholar 

  204. Theocaris PS, Panagiotopoulos PD, Bisbos C (1993) Unilateral contact, friction and related interactions in cracks. The direct boundary integral method. Int J Solids Struct 30(11): 1545–1561

    Article  MATH  Google Scholar 

  205. Timoshenko SP (1953) History of strength of materials. McGraw-Hill, New York

    Google Scholar 

  206. Toth L, Yarema SY (2006) Formation of the science of fatigue of metals. Part 1: 1825–1870. Mat Sci 42(5): 673–680

    Google Scholar 

  207. Troshchenko VT (1981) Deformirovaniye i razrusheniye metallov pri mnogotsiklovom nagruzhenii (Deformation and fracture of metals under high-cycle loading). Naukova Dumka, Kiev

    Google Scholar 

  208. Troshchenko VT, Tsybanev GV, Khotsyanovskii AO (1988) Determination of the durability of steels under fretting fatigue. Probl Prochn 6:3–8

    Google Scholar 

  209. Tsamasphyros G, Theocaris PS (1983) Integral equation solution for half-planes bonded together or in contact and contacting internal cracks or holes. Ing Arch 53(4):225–241

    Article  MATH  Google Scholar 

  210. Tyfour WR, Beynon JH (1995) The steady state wear behaviour of pearlitic rail steel under dry rolling-sliding contact conditions. Wear 180:79–89

    Article  Google Scholar 

  211. Tyfour WR, Beynon JH, Kapoor A (1996) Deterioration of rolling contact fatigue life of pearlitic rail steel due to dry-wet rolling-sliding line contact. Wear 197:255–265

    Article  Google Scholar 

  212. Waterhause RB (1972) Fretting corrosion. Pergamon Press, Oxford-New York

    Google Scholar 

  213. Way S (1935) Pitting due to rolling contact. J Appl Mech Trans ASME 2: A49–A58

    Google Scholar 

  214. Wu XR, Carlsson AJ (1991) Weight functions and stress intensity factor solutions. Pergamon Press, Oxford

    MATH  Google Scholar 

  215. Xu X, Cho D-H, Chang Y-S et al (2011) Evaluation of slant crack propagation under RCF in railway rail. J Mech Sci Technol 25(5):1215–1220

    Article  Google Scholar 

  216. Yarema SY (1987) Fundamentals and certain problems of fatigue fracture mechanics. Sov Mater Sci 23(5): 454–464

    Article  Google Scholar 

  217. Yarema SY (1975) Stages of fatigue fracture and their consequences. Sov Mater Sci 9(6): 681–686

    Article  Google Scholar 

  218. Yarema SY (1978) Assessment of metal and alloy resistance to cracking. Studies of fatigue crack growth and kinetic fatigue fracture diagrams. Sov Mater Sci 13(4): 351–368

    Article  Google Scholar 

  219. Yarema SY, Mikitishin SI (1976) Analytical description of the fatigue-failure diagrams of materials. Sov Mater Sci 11(6): 660–666

    Google Scholar 

  220. Zafošnik B, Ren Z, Flašker J, Mishuris G (2005) Modelling of surface crack growth under lubricated rolling–sliding contact loading. Int J Fract 134:127–149

    Article  MATH  Google Scholar 

  221. Zang WL, Gudmundson P (1991) Frictional contact problems of kinked cracks modeled by a boundary integral method. Int J Numer Meth Eng 31:427–446

    Article  MATH  Google Scholar 

  222. Zazulyak VA, Darchuk AI, Legun AM, Ivanitskii YL, Darchuk AI (1986) Evaluation of the crack resistance of large rolling-mill back-up rolls in cyclic loading. Sov Mater Sci 21(4): 383–385

    Article  Google Scholar 

  223. Zerbst U, Lundén R, Edel K-O, Smith RA (2009) Introduction to the damage tolerance behaviour of railway rails—a review. Eng Fract Mech 76:2563–2601

    Article  Google Scholar 

  224. Zerbst U, Madler K, Hintze H (2005) Fracture mechanics in railway applications—an overview. Eng Fract Mech 72(2):163–194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandra Datsyshyn .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datsyshyn, O., Panasyuk, V. (2020). Contact Lifetime Estimation Methods for Tribojoint Elements. A Survey. In: Structural Integrity Assessment of Engineering Components Under Cyclic Contact. Structural Integrity, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-23069-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23069-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23068-5

  • Online ISBN: 978-3-030-23069-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics