Skip to main content

Mechanisms of Mesenchymal Stem Cells for Autoimmune Disease Treatment

  • Chapter
  • First Online:
Stem Cell Transplantation for Autoimmune Diseases and Inflammation

Abstract

Autoimmune diseases are among the major causes of morbidity and mortality globally, in which women are more vulnerable than men. Autoimmune disease is a pathological condition in which immune cells attack own cells as a result of losing self-tolerance. Several immunosuppressant drugs have been developed to treat autoimmune diseases. However, these drugs help to control the severity of the diseases rather than treating the root causes. In recent years, immunomodulatory properties of mesenchymal stem cells (MSCs) have been explored, wherein these cells exhibit such properties through secretory factors. However, the secretion of immunomodulatory factors from MSCs is very dynamic and depends upon the inflamed microenvironment. Besides, the potential of extracellular vesicles (EVs) from MSCs has also been in the investigation in order to develop treatment for autoimmune diseases. In this review, we attempt to describe the cellular and molecular mechanism behind the pathogenesis of autoimmune disease, while the immunomodulatory properties and the potential of MSCs and their EVs in treating these disorders have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen-presenting cells

BM:

Bone marrow

CTLA:

Cytotoxic T-lymphocyte antigen

DCs:

Dendritic cells

ESCs:

Embryonic stem cells

EVs:

Extracellular vesicles

G-MSCs:

Gingival MSCs

HGF:

Hepatocyte growth factor

HLA:

Human leukocyte antigen G

h/m/cAD:

Human/murine/canine adipose derived

IDO:

Indoleamine-2,3-dioxygenase

IFNγ:

Interferon-γ

Ig:

Immunoglobulin

IL:

Interleukin

iPSCs:

Induced pluripotent stem cells

LIF:

Leukemia inhibitory factor

MSC:

Mesenchymal stem cells

NFκB:

Nuclear factor kappa B

NK:

Natural killer

NKT:

Natural killer T

NO:

Nitric oxide

NP:

Neural progenitor

PGE2:

Prostaglandin E2

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

STAT:

Signal transducers and activators of transcription

TCR:

T-cell receptor

TGF-β:

Transforming growth factor β

Th:

T-helper

TLR:

Toll-like receptors

TNFα:

Tumor necrosis factor α

Treg:

Regulatory T-cells

Ts:

Suppressor T-cells

UC:

Umbilical cord

References

  1. Cooper GS, Bynum MLK, Somers EC. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun. 2009;33(3-4):197–207.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yamamoto K. Introduction: autoimmunity special issue. Int Immunol. 2016;28(4):153–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front Neuroendocrinol. 2014;35(3):347–69.

    Article  CAS  PubMed  Google Scholar 

  4. Okada H, Kuhn C, Feillet H, Bach JF. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol. 2010;160(1):1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scudellari M. News feature: cleaning up the hygiene hypothesis. Proc Natl Acad Sci. 2017;114(7):1433–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bolon B. Cellular and molecular mechanisms of autoimmune disease. Toxicol Pathol. 2011;40(2):216–29.

    Article  PubMed  CAS  Google Scholar 

  7. Rioux JD, Abbas AK. Paths to understanding the genetic basis of autoimmune disease. Nature. 2005;435:584.

    Article  CAS  PubMed  Google Scholar 

  8. Yang S-H, Gao C-y, Li L, Chang C, Leung Patrick SC, Gershwin ME, Lian Z-X. The molecular basis of immune regulation in autoimmunity. Clin Sci. 2018;132(1):43–67.

    Article  CAS  Google Scholar 

  9. Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest. 2015;125(6):2228–33.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chandrashekara S. The treatment strategies of autoimmune disease may need a different approach from conventional protocol: a review. Indian J Pharmacol. 2012;44(6):665–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blazquez-Prunera A, Almeida CR, Barbosa MA. Human bone marrow mesenchymal stem/stromal cells preserve their immunomodulatory and chemotactic properties when expanded in a human plasma derived xeno-free medium. Stem Cells Int. 2017;2017:2185351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fayyad-Kazan H, Faour WH, Badran B, Lagneaux L, Najar M. The immunomodulatory properties of human bone marrow-derived mesenchymal stromal cells are defined according to multiple immunobiological criteria. Inflamm Res. 2016;65(6):501–10.

    Article  CAS  PubMed  Google Scholar 

  13. Gao F, Chiu SM, Motan DAL, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7:e2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kimbrel EA, Kouris NA, Yavanian GJ, Chu J, Qin Y, Chan A, Singh RP, McCurdy D, Gordon L, Levinson RD, Lanza R. Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Dev. 2014;23(14):1611–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Molina ER, Smith BT, Shah SR, Shin H, Mikos AG. Immunomodulatory properties of stem cells and bioactive molecules for tissue engineering. J Control Release. 2015;219:107–18.

    Article  CAS  PubMed  Google Scholar 

  16. Wang LT, Jiang SS, Ting CH, Hsu PJ, Chang CC, Sytwu HK, Liu KJ, Yen BL. Differentiation of mesenchymal stem cells from human induced pluripotent stem cells results in downregulation of c-Myc and DNA replication pathways with immunomodulation toward CD4 and CD8 cells. Stem Cells. 2018;36(6):903–14.

    Article  CAS  PubMed  Google Scholar 

  17. Bohana-Kashtan O, Civin CI. Fas ligand as a tool for immunosuppression and generation of immune tolerance. Stem Cells. 2004;22(6):908–24.

    Article  CAS  PubMed  Google Scholar 

  18. Mondino A, Khoruts A, Jenkins MK. The anatomy of T-cell activation and tolerance. Proc Natl Acad Sci U S A. 1996;93(6):2245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest. 2007;117(5):1119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fathman CG, Lineberry NB. Molecular mechanisms of CD4+ T-cell anergy. Nat Rev Immunol. 2007;7:599.

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305–34.

    Article  CAS  PubMed  Google Scholar 

  22. Kalekar LA, Mueller DL. Relationship between CD4 regulatory T cells and anergy in vivo. J Immunol. 2017;198(7):2527–33.

    Article  CAS  PubMed  Google Scholar 

  23. Pelanda R, Torres RM. Central B-cell tolerance: where selection begins. Cold Spring Harb Perspect Biol. 2012;4(4):a007146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301(5638):1374–7.

    Article  CAS  PubMed  Google Scholar 

  25. Bretscher P, Cohn M. A theory of self-nonself discrimination. Science. 1970;169(3950):1042–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hodgkin PD, Basten A. B cell activation, tolerance and antigen-presenting function. Curr Opin Immunol. 1995;7(1):121–9.

    Article  CAS  PubMed  Google Scholar 

  27. Smith DA, Germolec DR. Introduction to immunology and autoimmunity. Environ Health Perspect. 1999;107(Suppl 5):661–5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in autoimmunity. Nat Rev Immunol. 2013;13(8):566–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sozzani S, Del Prete A, Bosisio D. Dendritic cell recruitment and activation in autoimmunity. J Autoimmun. 2017;85:126–40.

    Article  CAS  PubMed  Google Scholar 

  30. Lan W, Luc Van K. Natural killer T cells and autoimmune disease. Curr Mol Med. 2009;9(1):4–14.

    Article  Google Scholar 

  31. Ronchi F, Falcone M. Immune regulation by invariant NKT cells in autoimmunity. Front Biosci. 2008;13:4827–37.

    Article  CAS  PubMed  Google Scholar 

  32. Flodstrom-Tullberg M, Bryceson YT, Shi FD, Hoglund P, Ljunggren HG. Natural killer cells in human autoimmunity. Curr Opin Immunol. 2009;21(6):634–40.

    Article  PubMed  CAS  Google Scholar 

  33. Fogel LA, Yokoyama WM, French AR. Natural killer cells in human autoimmune disorders. Arthritis Res Ther. 2013;15(4):216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mailliard RB, Son Y-I, Redlinger R, Coates PT, Giermasz A, Morel PA, Storkus WJ, Kalinski P. Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol. 2003;171(5):2366–73.

    Article  CAS  PubMed  Google Scholar 

  35. Piccioli D, Sbrana S, Melandri E, Valiante NM. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med. 2002;195(3):335–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pallmer K, Oxenius A. Recognition and regulation of T Cells by NK Cells. Front Immunol. 2016;7:251.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Durinovic-Belló I, Schlosser M, Riedl M, Maisel N, Rosinger S, Kalbacher H, Deeg M, Ziegler M, Elliott J, Roep BO, Karges W, Boehm BO. Pro- and anti-inflammatory cytokine production by autoimmune T cells against preproinsulin in HLA-DRB1∗04, DQ8 Type 1 diabetes. Diabetologia. 2004;47(3):439–50.

    Article  PubMed  CAS  Google Scholar 

  38. Fairweather D, Cihakova D. Alternatively activated macrophages in infection and autoimmunity. J Autoimmun. 2009;33(3-4):222–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chang M-ONCY. Dong C. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol. 2009;39(1):216–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wilde B, Thewissen M, Damoiseaux J, van Paassen P, Witzke O, Tervaert JWC. T cells in ANCA-associated vasculitis: what can we learn from lesional versus circulating T cells? Arthritis Res Ther. 2010;12(1):204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jain N, Nguyen H, Chambers C, Kang J. Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proc Natl Acad Sci. 2010;107(4):1524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Allen HL, De Franco E, McDonald TJ, Rajala H, Ramelius A, Barton J, Heiskanen K, Heiskanen-Kosma T, Kajosaari M, Murphy NP, Milenkovic T, Seppänen M, Lernmark Å, Mustjoki S, Otonkoski T, Kere J, Morgan NG, Ellard S, Hattersley AT. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet. 2014;46:812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kluger MA, Melderis S, Nosko A, Goerke B, Luig M, Meyer MC, Turner J-E, Meyer-Schwesinger C, Wegscheid C, Tiegs G, Stahl RAK, Panzer U, Steinmetz OM. Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int. 2016;89(1):158–66.

    Article  CAS  PubMed  Google Scholar 

  44. Pallandre JR, Brillard E, Crehange G, Radlovic A, Remy-Martin JP, Saas P, Rohrlich PS, Pivot X, Ling X, Tiberghien P, Borg C. Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity. J Immunol. 2007;179(11):7593–604.

    Article  CAS  PubMed  Google Scholar 

  45. Egwuagu CE. STAT3 in CD4+ T helper cell differentiation and inflammatory diseases. Cytokine. 2009;47(3):149–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Green NM, Marshak-Rothstein A. Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin Immunol. 2011;23(2):106–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Krieg AM, Vollmer J. Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol Rev. 2007;220:251–69.

    Article  CAS  PubMed  Google Scholar 

  48. Shlomchik MJ. Activating systemic autoimmunity: B’s, T’s, and tolls. Curr Opin Immunol. 2009;21(6):626–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Summers SA, Hoi A, Steinmetz OM, O’Sullivan KM, Ooi JD, Odobasic D, Akira S, Kitching AR, Holdsworth SR. TLR9 and TLR4 are required for the development of autoimmunity and lupus nephritis in pristane nephropathy. J Autoimmun. 2010;35(4):291–8.

    Article  CAS  PubMed  Google Scholar 

  50. Bacher S, Schmitz ML. The NF-kappaB pathway as a potential target for autoimmune disease therapy. Curr Pharm Des. 2004;10(23):2827–37.

    Article  CAS  PubMed  Google Scholar 

  51. Hultqvist M, Olsson LM, Gelderman KA, Holmdahl R. The protective role of ROS in autoimmune disease. Trends Immunol. 2009;30(5):201–8.

    Article  CAS  PubMed  Google Scholar 

  52. Mahbub ES, Haque N, Salma U, Ahmed A. Immune modulation in response to stress and relaxation. Pak J Biol Sci. 2011;14(6):363–74.

    Article  CAS  Google Scholar 

  53. Francois M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther. 2012;20(1):187–95.

    Article  CAS  PubMed  Google Scholar 

  54. Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med. 2012;18(2):128–34.

    Article  CAS  PubMed  Google Scholar 

  55. Plock JA, Schnider JT, Solari MG, Zheng XX, Gorantla VS. Perspectives on the use of mesenchymal stem cells in vascularized composite allotransplantation. Front Immunol. 2013;4:175.

    PubMed  PubMed Central  Google Scholar 

  56. Engela AU, Hoogduijn MJ, Boer K, Litjens NH, Betjes MG, Weimar W, Baan CC. Human adipose-tissue derived mesenchymal stem cells induce functional de-novo regulatory T cells with methylated FOXP3 gene DNA. Clin Exp Immunol. 2013;173(2):343–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gieseke F, Kruchen A, Tzaribachev N, Bentzien F, Dominici M, Muller I. Proinflammatory stimuli induce galectin-9 in human mesenchymal stromal cells to suppress T-cell proliferation. Eur J Immunol. 2013;43(10):2741–9.

    Article  CAS  PubMed  Google Scholar 

  58. Hinden L, Shainer R, Almogi-Hazan O, Or R. Ex vivo induced regulatory human/murine mesenchymal stem cells as immune modulators. Stem Cells. 2015;33(7):2256–67.

    Article  CAS  PubMed  Google Scholar 

  59. Huang F, Chen M, Chen W, Gu J, Yuan J, Xue Y, Dang J, Su W, Wang J, Zadeh HH, He X, Rong L, Olsen N, Zheng SG. Human gingiva-derived mesenchymal stem cells inhibit xeno-graft-versus-host disease via CD39-CD73-adenosine and IDO signals. Front Immunol. 2017;8:68.

    PubMed  PubMed Central  Google Scholar 

  60. Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia. 2009;57(11):1192–203.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, Lotfi J, Khorramnia S, Motamed MR, Togha M, Harirchian MH, Moghadam NB, Alikhani K, Yadegari S, Jafarian S, Gheini MR. Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther. 2012;7(6):407–14.

    Article  CAS  PubMed  Google Scholar 

  62. Fernandez O, Izquierdo G, Fernandez V, Leyva L, Reyes V, Guerrero M, Leon A, Arnaiz C, Navarro G, Paramo MD, Cuesta A, Soria B, Hmadcha A, Pozo D, Fernandez-Montesinos R, Leal M, Ochotorena I, Galvez P, Geniz MA, Baron FJ, Mata R, Medina C, Caparros-Escudero C, Cardesa A, Cuende N. Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: a triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS One. 2018;13(5):e0195891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Harris VK, Stark J, Vyshkina T, Blackshear L, Joo G, Stefanova V, Sara G, Sadiq SA. Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. EBioMedicine. 2018;29:23–30.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hou ZL, Liu Y, Mao XH, Wei CY, Meng MY, Liu YH, Zhuyun Yang Z, Zhu H, Short M, Bernard C, Xiao ZC. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis. Cell Adh Migr. 2013;7(5):404–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yan L, Jiang B, Niu Y, Wang H, Li E, Yan Y, Sun H, Duan Y, Chang S, Chen G, Ji W, Xu RH, Si W. Intrathecal delivery of human ESC-derived mesenchymal stem cell spheres promotes recovery of a primate multiple sclerosis model. Cell Death Discov. 2018;5:28.

    Google Scholar 

  66. Zafranskaya M, Nizheharodava D, Yurkevich M, Ivanchik G, Demidchik Y, Kozhukh H, Fedulov A. PGE2 contributes to in vitro MSC-mediated inhibition of non-specific and antigen-specific T cell proliferation in MS patients. Scand J Immunol. 2013;78(5):455–62.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang H, Liang J, Tang X, Wang D, Feng X, Wang F, Hua B, Wang H, Sun L. Sustained benefit from combined plasmapheresis and allogeneic mesenchymal stem cells transplantation therapy in systemic sclerosis. Arthritis Res Ther. 2017;19(1):165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Chang JW, Hung SP, Wu HH, Wu WM, Yang AH, Tsai HL, Yang LY, Lee OK. Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell Transplant. 2011;20(2):245–57.

    Article  PubMed  Google Scholar 

  69. Chen J, Wang Q, Feng X, Zhang Z, Geng L, Xu T, Wang D, Sun L. Umbilical cord-derived mesenchymal stem cells suppress autophagy of T cells in patients with systemic lupus erythematosus via transfer of mitochondria. Stem Cells Int. 2016;2016:4062789.

    PubMed  PubMed Central  Google Scholar 

  70. Choi EW, Shin IS, Park SY, Park JH, Kim JS, Yoon EJ, Kang SK, Ra JC, Hong SH. Reversal of serologic, immunologic, and histologic dysfunction in mice with systemic lupus erythematosus by long-term serial adipose tissue-derived mesenchymal stem cell transplantation. Arthritis Rheum. 2012;64(1):243–53.

    Article  CAS  PubMed  Google Scholar 

  71. Li X, Wang D, Liang J, Zhang H, Sun L. Mesenchymal SCT ameliorates refractory cytopenia in patients with systemic lupus erythematosus. Bone Marrow Transplant. 2013;48(4):544–50.

    Article  CAS  PubMed  Google Scholar 

  72. Park MJ, Kwok SK, Lee SH, Kim EK, Park SH, Cho ML. Adipose tissue-derived mesenchymal stem cells induce expansion of interleukin-10-producing regulatory B cells and ameliorate autoimmunity in a murine model of systemic lupus erythematosus. Cell Transplant. 2015;24(11):2367–77.

    Article  PubMed  Google Scholar 

  73. Alunno A, Montanucci P, Bistoni O, Basta G, Caterbi S, Pescara T, Pennoni I, Bini V, Bartoloni E, Gerli R, Calafiore R. In vitro immunomodulatory effects of microencapsulated umbilical cord Wharton jelly-derived mesenchymal stem cells in primary Sjogren’s syndrome. Rheumatology (Oxford). 2015;54(1):163–8.

    Article  CAS  Google Scholar 

  74. Hai B, Shigemoto-Kuroda T, Zhao Q, Lee RH, Liu F. Inhibitory effects of iPSC-MSCs and their extracellular vesicles on the onset of sialadenitis in a mouse model of Sjogren’s syndrome. Stem Cells Int. 2018;2018:2092315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Khalili S, Liu Y, Kornete M, Roescher N, Kodama S, Peterson A, Piccirillo CA, Tran SD. Mesenchymal stromal cells improve salivary function and reduce lymphocytic infiltrates in mice with Sjogren’s-like disease. PLoS One. 2012;7(6):e38615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu R, Su D, Zhou M, Feng X, Li X, Sun L. Umbilical cord mesenchymal stem cells inhibit the differentiation of circulating T follicular helper cells in patients with primary Sjogren’s syndrome through the secretion of indoleamine 2,3-dioxygenase. Rheumatology (Oxford). 2015;54(2):332–42.

    Article  CAS  Google Scholar 

  77. Forbes GM, Sturm MJ, Leong RW, Sparrow MP, Segarajasingam D, Cummins AG, Phillips M, Herrmann RP. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’ disease refractory to biologic therapy. Clin Gastroenterol Hepatol. 2014;12(1):64–71.

    Article  PubMed  Google Scholar 

  78. Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009;136(3):978–89.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang J, Lv S, Liu X, Song B, Shi L. Umbilical cord mesenchymal stem cell treatment for Crohn’s disease: a randomized controlled clinical trial. Gut Liver. 2018;12(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  80. Sah SK, Agrahari G, Nguyen CT, Kim YS, Kang KS, Kim TY. Enhanced therapeutic effects of human mesenchymal stem cells transduced with superoxide dismutase 3 in a murine atopic dermatitis-like skin inflammation model. Allergy. 2018;73(12):2364–76.

    Article  CAS  PubMed  Google Scholar 

  81. Villatoro AJ, Hermida-Prieto M, Fernandez V, Farinas F, Alcoholado C, Rodriguez-Garcia MI, Marinas-Pardo L, Becerra J. Allogeneic adipose-derived mesenchymal stem cell therapy in dogs with refractory atopic dermatitis: clinical efficacy and safety. Vet Rec. 2018;183(21):654.

    Article  PubMed  Google Scholar 

  82. Haque N, Kasim NH, Rahman MT. Optimization of pre-transplantation conditions to enhance the efficacy of mesenchymal stem cells. Int J Biol Sci. 2015;11(3):324–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Najar M, Raicevic G, Boufker HI, Fayyad-Kazan H, De Bruyn C, Meuleman N, Bron D, Toungouz M, Lagneaux L. Adipose-tissue-derived and Wharton’s jelly-derived mesenchymal stromal cells suppress lymphocyte responses by secreting leukemia inhibitory factor. Tissue Eng Part A. 2010;16(11):3537–46.

    Article  CAS  PubMed  Google Scholar 

  84. Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response. Immunol Lett. 2015;168(2):140–6.

    Article  PubMed  CAS  Google Scholar 

  85. Haque N, Abu Kasim NH. Pooled human serum increases regenerative potential of in vitro expanded stem cells from human extracted deciduous teeth. In: Advances in experimental medicine and biology. Boston, MA: Springer; 2017. p. 1–16. https://doi.org/10.1007/5584_2017_74.

    Chapter  Google Scholar 

  86. Wang L, Gu Z, Zhao X, Yang N, Wang F, Deng A, Zhao S, Luo L, Wei H, Guan L, Gao Z, Li Y, Wang L, Liu D, Gao C. Extracellular vesicles released from human umbilical cord-derived mesenchymal stromal cells prevent life-threatening acute graft-versus-host disease in a mouse model of allogeneic hematopoietic stem cell transplantation. Stem Cells Dev. 2016;25(24):1874–83.

    Article  CAS  PubMed  Google Scholar 

  87. Del Fattore A, Luciano R, Pascucci L, Goffredo BM, Giorda E, Scapaticci M, Fierabracci A, Muraca M. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant. 2015;24(12):2615–27.

    Article  PubMed  Google Scholar 

  88. Koch M, Lemke A, Lange C. Extracellular vesicles from MSC modulate the immune response to renal allografts in a MHC disparate rat model. Stem Cells Int. 2015;2015:486141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by High Impact Research MOHE Grant UM.C/625/1/HIR/MOHE/DENT/01 from the Ministry of Higher Education Malaysia and University of Malaya Research Grant UMRG RP019/13HTM.

Conflicts of Interest: The authors confirm that there are no conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Hayaty Abu Kasim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haque, N., Ramasamy, T.S., Kasim, N.H.A. (2019). Mechanisms of Mesenchymal Stem Cells for Autoimmune Disease Treatment. In: Pham, P. (eds) Stem Cell Transplantation for Autoimmune Diseases and Inflammation. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-23421-8_2

Download citation

Publish with us

Policies and ethics