Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSCONTROL))

  • 485 Accesses

Abstract

When the number of agents grows and becomes enormous, e.g., social network and the Internet, the finite network modeling capturing the explicit interactions between agents is inefficient and prohibitive. To this end, this chapter investigates decision-making on complex networks by proposing a new type of system framework. The focus of this chapter is to design an optimal strategy for controlling two competing epidemics spreading over complex networks. The designed strategy globally optimizes the trade-off between the control cost and the severity of epidemics in the network. We also provide structural results on the predictability of epidemic spreading by showing the existence and uniqueness of the solution. Finally, a gradient descent algorithm based on a fixed-point iterative scheme is proposed to find the optimal strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The control effort refers to the applied quarantining strategy.

References

  1. Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86(14):3200

    Article  Google Scholar 

  2. Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A (2015) Epidemic processes in complex networks. Rev Mod Phys 87(3):925–979

    Article  MathSciNet  Google Scholar 

  3. Chen J, Touati C, Zhu Q (2019) Optimal secure two-layer iot network design. IEEE Trans Control Netw Syst. https://doi.org/10.1109/TCNS.2019.2906893

    Article  Google Scholar 

  4. Chen J, Zhu Q (2016) Resilient and decentralized control of multi-level cooperative mobile networks to maintain connectivity under adversarial environment. In: Conference on decision and control (CDC). IEEE, pp 5183–5188

    Google Scholar 

  5. Chen J, Zhu Q (2016) Interdependent network formation games with an application to critical infrastructures. In: American control conference (ACC). IEEE, pp 2870–2875

    Google Scholar 

  6. Moreno Y, Nekovee M, Pacheco AF (2004) Dynamics of rumor spreading in complex networks. Phys Rev E 69(6):066,130

    Google Scholar 

  7. Omic J, Orda A, Mieghem PV (2009) Protecting against network infections: a game theoretic perspective. In: IEEE conference on computer and communications, pp 1485–1493

    Google Scholar 

  8. Garetto M, Gong W, Towsley D (2003) Modeling malware spreading dynamics. IEEE Conf Comput Commun 3:1869–1879

    Google Scholar 

  9. Gross T, DLima CJD, Blasius B (2006) Epidemic dynamics on an adaptive network. Phys Rev Lett 96(20):208,701

    Google Scholar 

  10. Pastor-Satorras R, Vespignani A (2002) Immunization of complex networks. Phys Rev E 65(3):036,104

    Google Scholar 

  11. Chen J, Zhang R, Zhu Q (2017) Optimal control of interdependent epidemics in complex networks. In: SIAM workshop on network science

    Google Scholar 

  12. Van Mieghem P, Omic J, Kooij R (2009) Virus spread in networks. IEEE/ACM Trans Netw 17(1):1–14

    Article  Google Scholar 

  13. Gang Y, Tao Z, Jie W, Zhong-Qian F, Bing-Hong W (2005) Epidemic spread in weighted scale-free networks. Chin Phys Lett 22(2):510

    Article  Google Scholar 

  14. Newman ME (2002) Spread of epidemic disease on networks. Phys Rev E 66(1):016,128

    Google Scholar 

  15. Dickison M, Havlin S, Stanley HE (2012) Epidemics on interconnected networks. Phys Rev E 85(6):066,109

    Google Scholar 

  16. Saumell-Mendiola A, Serrano MÁ, Boguná M (2012) Epidemic spreading on interconnected networks. Phys Rev E 86(2):026,106

    Google Scholar 

  17. Paré PE, Beck CL, Nedić A (2018) Epidemic processes over time-varying networks. IEEE Trans Control Netw Syst 5(3):1322–1334

    Article  MathSciNet  Google Scholar 

  18. Prakash BA, Tong H, Valler N, Faloutsos M, Faloutsos C (2010) Virus propagation on time-varying networks: theory and immunization algorithms. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 99–114

    Google Scholar 

  19. Hansen E, Day T (2011) Optimal control of epidemics with limited resources. J Math Biol 62(3):423–451

    Article  MathSciNet  Google Scholar 

  20. Sahneh FD, Scoglio C (2011) Epidemic spread in human networks. In: IEEE conference on decision and control and European control conference (CDC-ECC), pp 3008–3013

    Google Scholar 

  21. Ramirez-Llanos E, Martinez S (2014) A distributed algorithm for virus spread minimization. In: American control conference (ACC), pp 184–189

    Google Scholar 

  22. Befekadu GK, Zhu Q (2019) Optimal control of diffusion processes pertaining to an opioid epidemic dynamical model with random perturbations. J Math Biol 78(5):1425–1438

    Article  MathSciNet  Google Scholar 

  23. Trajanovski S, Hayel Y, Altman E, Wang H, Van Mieghem P (2015) Decentralized protection strategies against sis epidemics in networks. IEEE Trans Control Netw Syst 2(4):406–419

    Article  MathSciNet  Google Scholar 

  24. Hayel Y, Zhu Q (2017) Epidemic protection over heterogeneous networks using evolutionary poisson games. IEEE Trans Inf Forensics Secur 12(8):1786–1800

    Article  Google Scholar 

  25. Venturino E (2001) The effects of diseases on competing species. Math Biosci 174(2):111–131

    Article  MathSciNet  Google Scholar 

  26. Han L, Pugliese A (2009) Epidemics in two competing species. Nonlinear Anal Real World Appl 10(2):723–744

    Article  MathSciNet  Google Scholar 

  27. Karrer B, Newman M (2011) Competing epidemics on complex networks. Phys Rev E 84(3):036,106

    Google Scholar 

  28. Taynitskiy V, Gubar E, Zhu Q (2017) Optimal impulse control of bi-virus SIR epidemics with application to heterogeneous internet of things. In: IEEE constructive nonsmooth analysis and related topics (CNSA), pp 1–4

    Google Scholar 

  29. Lee P, Clark A, Alomair B, Bushnell L, Poovendran R (2018) Adaptive mitigation of multi-virus propagation: a passivity-based approach. IEEE Trans Control Netw Syst 5(1):583–596

    Article  MathSciNet  Google Scholar 

  30. Gubar E, Zhu Q (2013) Optimal control of influenza epidemic model with virus mutations. In: European control conference (ECC), IEEE, pp 3125–3130

    Google Scholar 

  31. Chen J, Zhu Q (2019) Interdependent strategic security risk management with bounded rationality in the internet of things. IEEE Trans Inf Forensics Secur. https://doi.org/10.1109/TIFS.2019.2911112

    Article  Google Scholar 

  32. Chen J, Zhu Q (2018) A linear quadratic differential game approach to dynamic contract design for systemic cyber risk management under asymmetric information. In: 2018 56th annual Allerton conference on communication, control, and computing (Allerton). IEEE, pp 575–582

    Google Scholar 

  33. Pawlick J, Zhu Q (2017) Strategic trust in cloud-enabled cyber-physical systems with an application to glucose control. IEEE Transa Inf Forensics Secur 12(12):2906–2919

    Article  Google Scholar 

  34. Pawlick J, Chen J, Zhu Q (2019) iSTRICT: An interdependent strategic trust mechanism for the cloud-enabled internet of controlled things. IEEE Trans Inf Forensics Secur 14(6):1654–1669

    Article  Google Scholar 

  35. Chen J, Zhu Q (2016) Optimal contract design under asymmetric information for cloud-enabled internet of controlled things. In: International conference on decision and game theory for security. Springer, pp 329–348

    Google Scholar 

  36. Chen J, Zhu Q (2017) Security as a service for cloud-enabled internet of controlled things under advanced persistent threats: a contract design approach. IEEE Trans Inf Forensics Secur 12(11):2736–2750

    Article  Google Scholar 

  37. Chen J, Touati C, Zhu Q (2017) A dynamic game analysis and design of infrastructure network protection and recovery. ACM SIGMETRICS Perform Eval Rev 45(2):125–128

    Google Scholar 

  38. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntao Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, J., Zhu, Q. (2020). Interdependent Decision-Making on Complex Networks. In: A Game- and Decision-Theoretic Approach to Resilient Interdependent Network Analysis and Design. SpringerBriefs in Electrical and Computer Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-23444-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23444-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23443-0

  • Online ISBN: 978-3-030-23444-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics