Skip to main content

Reproductive Science in Sharks and Rays

  • Chapter
  • First Online:
Reproductive Sciences in Animal Conservation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1200))

Abstract

Sharks and rays make up 96% of the class Chondrichthyes. They are among the most endangered of any taxa, threatened through habitat loss, overfishing and hunting for shark fin soup, traditional medicines or sport, and because many species are slow to mature and produce low numbers of offspring. Sharks and rays are ecologically and reproductively diverse, though basic knowledge of their reproductive physiology is lacking for many species. There has been a move towards non-lethal approaches of data collection in sharks and rays, especially with reproductive technologies such as ultrasound and hormone analysis. Additionally, technologies such as semen collection and artificial insemination are lending themselves to develop tools to manage small or closed populations, with cold-stored sperm being shipped between institutions to maximize genetic diversity in managed populations. The role of steroid hormones in elasmobranch reproduction appears broadly conserved, though heavily influenced by environmental cues, especially temperature. For this reason elasmobranchs are likely at risk of reproductive perturbations due to environmental changes such as ocean warming. Current reproductive technologies including computer assisted sperm assessments to study warming effects on sperm motility and intra-uterine satellite tags to determine birthing grounds will serve to generate data to mitigate anthropogenic changes that threaten the future of this vulnerable groups of fish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla A. (2004). Status and conservation of sharks in the Mediterranean Sea. IUCN Technical paper, 7 p.

    Google Scholar 

  • Alava SMH, Cosson J. Sperm motility in fishes. I Effects of temperature and pH: a review. Cell Biol Int. 2005;29:101–10.

    Article  Google Scholar 

  • Anderson B, Belcher C, Slack J, Gelsleichter J. Evaluation of the use of portable ultrasonography to determine pregnancy status and fecundity in bonnethead shark (Sphyrna tiburo). Fish Biol. 2018;93:1163–70.

    Article  Google Scholar 

  • Andreeva AM, Fedorov RA. Features of the organization of low molecular weight proteins from the blood and tissue fluid of the common stingray Dasyatis pastinaca (Chondroichthyes: Trygonidae). Russ J Mar Biol. 2010;36:469–72.

    Article  CAS  Google Scholar 

  • Awruch C. Reproductive endocrinology in chondrichthyans: the present and the future. Gen Comp Endocrinol. 2013;192:60–70.

    Article  CAS  PubMed  Google Scholar 

  • Awruch CA, Frusher SD, Pankhurst NW, Stevens JD. Non-lethal assessment of reproductive characteristics for management and conservation of sharks. Mar Ecol Prog Ser. 2008;355:277–85.

    Article  Google Scholar 

  • Baker ME, Nelson DR, Studer RA. Origin of the response to adrenal and sex steroids: roles of promiscuity and co0evolution of enzymes and steroid receptors. J Steroid Biochem Mol Biol. 2015;151:12–24.

    Article  CAS  PubMed  Google Scholar 

  • Blanco JM, Wildt DE, Höfle U, Voelker W, Donoghue AM. Implementing artificial insemination as an effective tool for ex situ conservation of endangered avian species. Theriogenology. 2009;71:200–13.

    Article  CAS  PubMed  Google Scholar 

  • Blaylock RA. Distribution and abundance of the cownose ray Rhinoptera bonasus, in the lower Chesapeake Bay. Estuaries. 1993;16:255–63.

    Article  Google Scholar 

  • Bonfil R, Meÿer M, Scholl MC, Johnson R, O’Brien S, Oosthuizen H, Swanson S, Kotze D, Paterson M. Transoceanic migration, spatial dynamics, and population linkages of white sharks. Science. 2005;310:100–3.

    Article  CAS  PubMed  Google Scholar 

  • Buckland-Nicks JA, Chia FS. Locomotion of the filiform sperm of Littorina (Gastropoda, Prosobranchia). Cell Tissue Res. 1981;219:27–39.

    Article  CAS  PubMed  Google Scholar 

  • Buddle AL, Van Dyke JU, Thonpson MB, Simpfendorfer CA, Whittington CM. Evolution of placentotrophy: using viviparous sharks as a model to understand vertebrate placental evolution. Mar Freshw Res. 2018:1–17.

    Google Scholar 

  • Byrne RJ, Avise JC. Genetic mating system of the brown smoothhound shark (Mustelus henlei), including a literature review of multiple paternity in other elasmobranch species. Mar Biol. 2012;159:749–56.

    Article  Google Scholar 

  • Callard IP, Klosterman LL, Sorbera LA, Fileti LA, Reese JC. Endocrine regulation of reproduction in elasmobranchs: archetype for terrestrial vertebrates. J Exp Zool Suppl. 1989;2:12–22.

    Article  Google Scholar 

  • Camhi MD. Conservation status of pelagic elasmobranchs. In: Camhi MD, Pikitch EK, Babcock EA, editors. Sharks of the open ocean: biology, fisheries and conservation: Blackwell; 2008. https://doi.org/10.1002/9781444302516.

    Google Scholar 

  • Capapé C. New data on the reproductive biology of the thorny stingray, Dasytis centroura, from off the Tunisian coasts. Environ Biol Fish. 1993;38:73–80.

    Article  Google Scholar 

  • Capapé C, Zaouali J. Reproductive biology of the marbled stingray, Dasytis marmorata, in Tunisian waters. J Aquaric Aquat Sci. 1995;7:108–19.

    Google Scholar 

  • Carrier JC, Pratt HL, Martin LK. Group Reproductive Behaviors in Free-Living Nurse Sharks, Ginglymostoma cirratum. Copeia 1994;3:646.

    Article  Google Scholar 

  • Carrier JC, Murru FL, Walsh MT, Pratt HL. Assessing reproductive potential and gestation in nurse sharks (Ginglymostoma cirratum) using ultrasonography and endoscopy: an example of bridging the gap between field research and captive studies. Zoo Biol. 2004;22:179–87.

    Article  Google Scholar 

  • Castro JI, Sato K, Bodine AB. A novel mode of embryonic nutrition in the tiger shark, Galerocerdo cuvier. Mar Biol Res. 2015;12:200–5.

    Article  Google Scholar 

  • Chapman DD, Prodohl PA, Gelsleichter J, Manire CA, Shivji MS. Predominance of genetic monogamy by females in a hammerhead shark, Sphyrna tiburo: implications for shark conservation. Mol Ecol. 2004;13:1965–74.

    Article  CAS  PubMed  Google Scholar 

  • Chapman DD, Shivji MS, Louis E, Sommer J, Fletcher H, Prodöhl PA. Virgin birth in a hammerhead shark. Biol Lett. 2007;3:425–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman DD, Firchau B, Shivji MS. Parthenogenesis in a large-bodied requiem shark, the blacktip Carcharhinus limbatus. J Fish Biol. 2008;73:1473–7.

    Article  Google Scholar 

  • Chevolot M, Ellis JR, Rijnsdorp AD, Stam WT, Olsen JL. Multiple paternity analysis in the thornback ray Raja clavata. J Hered. 2007;98:712–5.

    Article  CAS  PubMed  Google Scholar 

  • Compagno LJV. Pelagic elasmobranch diversity. In: Camhi MD, Pikitch EK, Babcock EA, editors. Sharks of the open ocean: biology, fisheries and conservation. Oxford: Blackwell; 2008. p. 14–22.

    Chapter  Google Scholar 

  • Conrath CL, Musick JA. Reproductive biology of elasmobranchs. In: Carrier JC, Musick JA, Hiethaus MR, editors. Biology of sharks and their relatives. Boca Raton: CRC Press; 2012. p. 291–312.

    Chapter  Google Scholar 

  • Cray C, Rodriguez M, Field C, McDermott A, Leppert L, Clauss T, Bossart GD. Protein and cholesterol electrophoresis of plasma samples from captive cownose ray Rhinoptera bonasus. J Vet Diagn Invest. 2015;27:688–95.

    Article  CAS  PubMed  Google Scholar 

  • Castro JI (2009). Observations on the reproductive cycles of some viviparous North American sharks. Aqua, Int J Ichthy. 2009;15:205-222.

    Google Scholar 

  • Daly J, Jones R. The use of reproductive technologies in breeding programs for elasmobranchs in aquaria. In: The Elasmobranch Husbandry Manual II: recent advances in the care of sharks, rays and their relatives. Columbus: Ohio Biological Survey; 2017. p. 363–74.

    Google Scholar 

  • Daly J, Gunn I, Kirby N, Jones R, Galloway D. Ultrasound examination and behavior scoring of captive broadnose sevengill sharks, Notorhynchus cepedianus. Zoo Biol. 2007;26:331–43.

    Article  Google Scholar 

  • Dill LM, Heithaus MR, Walters CJ. Behaviorally mediated indirect interactions in marine communities and their conservation implications. Ecology. 2003;85:1151–7.

    Article  Google Scholar 

  • Driggers WB III, Hoffmayer ER. Variability in the reproductive cycle of finetooth sharks, Charcharhinus isodon, in the Northern Gulf of Mexico. Copeia. 2009;2009:390–3.

    Article  Google Scholar 

  • Dudgeon CL, Coulton L, Bone R, Ovenden JR, Thomas S. Switch from sexual to parthenogenetic reproduction in a zebra shark. Sci Rep. 2017;7:40537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dulvy NK, Davidson LNK, Kyne PM, Simpfendorfer CA, Harrison LR, Jk C, Fordham SV. Ghosts of the coast: global extinction risk and conservation of sawfishes. Aquat Conserv Mar Freshwat Ecosyst. 2014;26:134–53. https://doi.org/10.1002/aqc.2525.

    Article  Google Scholar 

  • Dzyuba V, Ninhaus-Silveira A, Kahanec M, Veríssimo-Silveira R, Rodina M, Holt WV, Dzyuba B. Sperm motility in ocellate river stingrays: evidence for post-testicular sperm maturation and capacitation in Chondrichthyes. J Zool. 2019;307:9–16.

    Article  Google Scholar 

  • Eschmeyer WN, Fong JD. Species by family/subfamily. 2019. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp. Accessed 24 Feb 2019.

  • Ezcurra JM, Lowe CL, Mollet HF, Ferry LA, O’Sullivan JB. Captive feeding and growth of young-of-the-year white sharks, Charcharodon charcharias, at the Monterey Bay Aquarium. In: Domeier ML, editor. Global perspectives on the biology and life history of the white shark. Boca Raton: CRC Press; 2012.

    Google Scholar 

  • Fasano S, D’Antonio M, Pierantoni R, Chieffi G. Plasma and follicular tissue steroid levels in the elasmobranch fish, Torpedo marmorata. Gen Comp Endocrinol. 1992;85:327–33.

    Article  CAS  PubMed  Google Scholar 

  • Feldheim KA, Gruber S, Ashley MV. Multiple paternity of a lemon shark litter (Chondrichthyes: Carcharhinidae). Copeia. 2001;3:81–6.

    Google Scholar 

  • Feldheim KA, Chapman DD, Sweet D, Fitzpatrick S, Prodöhl PA, Shivji MS, Snowden B. Shark virgin birth produces multiple viable offspring. J Hered. 2010;101:374–7.

    Article  PubMed  Google Scholar 

  • Feldheim KA, Gruber S, Di Battista J, Babcock E, Kessel S, Hendry A, Pikitch E, Ashley MV, Chapman DD. Two decades of genetic profiling yields first evidence of natal philopatry and long-term fidelity to parturition sites in sharks. Mol Ecol. 2014;23:110–7.

    Article  PubMed  Google Scholar 

  • Feldheim KA, Clews A, Henningsen A, Todorov L, McDermott C, Meyers M, Bradley J, Pulver A, Anderson E, Marshall A. Multiple births by a captive swellshark Cephaloscyllium ventriosum via facultative parthenogenesis. J Fish Biol. 2017a;90:1047–53.

    Article  CAS  PubMed  Google Scholar 

  • Feldheim KA, Fields AT, Chapman DD, Scharer RM, Poulakis GR. Insights into reproduction and behavior of the smalltooth sawfish Pristis pectinata. Endanger Species Res. 2017b;34:463–71.

    Article  Google Scholar 

  • Fields AT, Feldheim KA, Poulakis GR, Chapman DD. Facultative parthenogenesis in a critically endangered wild vertebrate. Curr Biol. 2015;25:R439–47.

    Article  CAS  Google Scholar 

  • Gelsleichter J, Evans AN. Hormonal regulation of elasmobranch physiology. In: Carrier JC, Musick JA, Heithaus MR, editors. Biology of sharks and their relatives. Boca Raton: CRC Group, Taylor and Francis; 2012.

    Google Scholar 

  • Hamlett WC, Knight DP, Koob TJ, Jezior M, Luong T, et al. Survey of oviducal gland structure and function in elasmobranchs. J Exp Zool. 1998;282:399–420.

    Article  Google Scholar 

  • Hamlett WC, Reardon M, Clark J, Walker TI. Ultrastructure of sperm storage and male genital ducts in the elephant fish, Callorhynchus milli. J Exp Zool. 2002;292:111–28.

    Article  PubMed  Google Scholar 

  • Hamlett WC, Kormanik G, Storrie M, Stevens B, Walker TI. Chondrichthyan parity, lecithotropy and matrotrophy. In: Hamlett WC, editor. Reproductive biology and phylogeny of Chondrichthyes. Enfield: Science Publishers; 2005a. p. 395–434.

    Google Scholar 

  • Hamlett WC, Knight DP, Periera FTV, Steele J, Sever DM. Oviducal glands in Chondrichthyans. In: Hamlett WC, editor. Reproductive biology and phylogeny of Chondrichthyes. Enfield: Science Publishers; 2005b. p. 301–35.

    Google Scholar 

  • Hammerschlag N, Sulikowski J. Killing for conservation: the need for alternatives for lethal sampling of apex predatory sharks. Endanger Species Res. 2011;14:135–40.

    Article  Google Scholar 

  • Hammerschlag N, Williams L, Fallows M, Fallows C. Disappearance of white sharks leads to the novel emergence of an allopatric apex predator, the sevengill shark. Sci Rep. 2019;9:1–6.

    Article  CAS  Google Scholar 

  • Harmon TS, Kamerman TY, Corwin AL, Sellas AB. Consecutive parthenogenetic births in a spotted eagle ray Aetobatus narinari. J Fish Biol. 2016;88:741–5.

    Article  CAS  PubMed  Google Scholar 

  • Harris JE. A note of the breeding season, sex ratio and embryo development of the dogfish, Scyliorhinus canicula. J Mar Biol Assoc UK. 1952;31:269–74.

    Article  Google Scholar 

  • Heithaus MR. The biology of tiger sharks, Galeocerdo cuvier, in Shark Bay, Western Australia: sex ratio, size distribution, diet, and seasonal changes in catch rates. Environ Biol Fish. 2001;61:25–36.

    Article  Google Scholar 

  • Henningsen AD, Murru FL, Rasmussen LEL, Whitaker BR, Violetta GC. Serum levels of reproductive steroid hormones in captive sand tiger sharks, Carcharias taurus (Rafinesque), and comments on their relation to sexual conflicts. Fish Physiol Biochem. 2008;34:437–46.

    Article  CAS  PubMed  Google Scholar 

  • Heupel MR, Whittier JM, Bennett MB. Plasma steroid hormone profiles and reproductive biology of the epaulette shark, Hemiscyllium ocellatum. J Exp Zool. 1999;594:586–94.

    Article  Google Scholar 

  • Idler DR, Freeman HC. Sex hormone binding proteins I. Binding of steroids by serum of an elasmobranch (Raja radiate). Gen Comp Endocrinol. 1969;13:75–82.

    Article  CAS  PubMed  Google Scholar 

  • Jirik JE, Lowe CG. An elasmobranch maternity ward: female round stingrays Urobatis halleri use warm, restored estuarine habitat during gestation. J Fish Biol. 2012;80:1227–45.

    Article  CAS  PubMed  Google Scholar 

  • Jones RC, Jones N, Djakiew D. Luminal composition and maturation of spermatozoa in the male genital ducts of the Port Jackson shark, Heterodontus portusjacksoni. J Exp Zool. 1984;230:417–26.

    Article  CAS  Google Scholar 

  • Karsten AH, Turner JW. Fecal corticosterone assessment in the epaulette shark (Hemiscyllium ocellatum). J Exp Zool. 2003;299A:188–96.

    Article  CAS  Google Scholar 

  • Köttgen M, Hofherr A, Li W, Chu K, Cook S, Montell C, Watnick T. Drosophila sperm swim backwards in the female reproductive tract and are activated via TRPP2 ion channels. PLoS One. 2011;6:1–8.

    Article  CAS  Google Scholar 

  • Lauria V, gristina M, Attrill MJ, Fiorentino F, Garofalo G. Predictive habitat suitability models to aid conservation of elasmobranch diversity in the central Mediterranean Sea. Sci Rep. 2015;5:13245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luer CA, Walsh CJ, Bodine AB, Wyffels J. Normal embryonic development in the clearnose skate, Raja eglanteria, with experimental observations on artificial insemination. Environ Biol Fish. 2007;80:239–55.

    Article  Google Scholar 

  • Manire CA, Rasmussen LEL, Hess DL, Heuter RE. Serum steroid hormones and the reproductive cycle in the female bonnethead shark (Sphyrna tiburo). Gen Comp Endocrinol. 1995;97:366–76.

    Article  CAS  PubMed  Google Scholar 

  • Maruska KP, Gelsleichter J. Hormones and reproduction in Chondrichthyan fishes. In: Norris DO, Lopez KH, editors. Hormones and reproduction of vertebrates, Vol 1—fishes. San Diego: Academic Press; 2011. p. 209–31.

    Google Scholar 

  • Masuda M, Izawa Y, Kametsuta S, Ikuta H, Isogai T. Artificial insemination of the cloudy catshark. J Jpn Assoc Zool Gardens Aquariums. 2003;44:39–43.

    Google Scholar 

  • Masuda M, Izawa Y, Kametsuta S, Ikuta H, Isogai T. Artificial insemination of the white-spotted bamboo shark, Chiloscyllium plagiosum. J Jpn Assoc Zool Gardens Aquariums. 2005;46:91–6.

    Google Scholar 

  • McComb DM, Gelsleichter J, Manire CA, Brinn R, Brown CL. Comparative thyroid hormone concentration in maternal serum and yolk of the bonnethead shark (Sphyrna tiburo) from two sites along the coast of Florida. Gen Comp Endocrinol. 2005;144:167–73.

    Article  CAS  PubMed  Google Scholar 

  • Minamikawa S, Morisawa M. Acquisition, initiation and maintenance of sperm motility in the shark, Triakis scyllia. Comp Biochem Physiol. 1996;113A:387–92.

    Article  CAS  Google Scholar 

  • Mull CG, Lowe CG, Young KA. Seasonal reproduction of female round stingrays (Urobatis halleri): steroid hormone profiles and assessing reproductive state. Gen Comp Endocrinol. 2010;166:379–87.

    Article  CAS  PubMed  Google Scholar 

  • Myers RA, Baum JK, Shepherd TD, Powers SP, Peterson CH. Cascading effects of the loss of predatory sharks from a coastal ocean. Science. 2007;315:1846–50.

    Article  CAS  PubMed  Google Scholar 

  • Mylniczenko ND, Sumigama S, Wyffels JT, Wheaton CJ, Guttridge TL, DiRocco S, Penfold LM. Am J Vet Res. 2019. In Press.

    Google Scholar 

  • McCully SR, Scott F, Ellis JR, Pilling GM. Productivity and susceptibility analysis: Application and suitability for data poor assessment of elasmobranchs in northern European seas. Collect. Vol. Sci. Pap. ICCAT. 2013; 69:1679-1698.

    Google Scholar 

  • Nozu R, Murakumo K, Yano N, Furuyama R, Matsumoto R, Yanagisawa M, Sato K. Changes in sex steroid hormone levels reflect the reproductive status of captive female zebra sharks (Stegostoma fasciatum). Gen Comp Endocrinol. 2018;265:174–9.

    Article  CAS  PubMed  Google Scholar 

  • Parsons GR, Grier HJ. Seasonal changes in shark testicular structure and spermatogenesis. J Exp Zool. 1992;261:173–84.

    Article  Google Scholar 

  • Paxton AB, Blair E, Blawas C, Fatzinger MH, Marens M, Holmberg J, Kingen C, Houppermans T, Keusenkothen M, McCord J, Silliman BR, Penfold LM. Citizen science reveals female sand tiger sharks (Carcharias taurus) exhibit signs of site fidelity on shipwrecks. Ecology. 2019:e02687.

    Google Scholar 

  • Pratt HL Jr. The storage of spermatozoa in the oviducal glands of western North Atlantic sharks. Environ Biol Fish. 1993;38:139–49.

    Article  Google Scholar 

  • Pratt HL Jr, Tanaka S. Sperm storage in male elasmobranchs: a description and survey. J Morphol. 1994;219:297–308.

    Article  PubMed  Google Scholar 

  • Pratt HL, Carrier JC. A review of elasmobranch reproductive behavior with a case study on the nurse shark, Ginglymostoma cirratum. Environ. Biol. Fishes. 2001:60;157-188

    Google Scholar 

  • Prohaska BK, Tsang PCW, Driggers WB III, Hoffmaer ER, Wheeler CR, Brown AC, Sulikowski JA. Assessing reproductive status in elasmobranch fishes using steroid hormones extracted from skeletal muscle tissue. Conserv Physiol. 2013;1:1–13.

    Article  CAS  Google Scholar 

  • Rasmussen LEL, Murro FL. Long-term studies of serum concentrations of reproductively related steroid hormones in individual captive carcharhinids. Aust J Mar Freshwat Res. 1992;43:273–81.

    Article  CAS  Google Scholar 

  • Rosa R, Seibel BA. Synergistic effects of climate-related variables suggest future physiological impairment in a top predator. Proc Natl Acad Sci. 2008;105:20776–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa RS, Charvet-Almeida P, Quijada CCD. Biology of the south American Potamotrygonid stingrays. In: Carrier JC, Musick JA, Heithaus MR, editors. Sharks and their relatives II. Boca Raton: CRC Press; 2010.

    Google Scholar 

  • Rosa R, Baptista M, Lopes VM, Pegado MR, Ricardo Paula J, Trubenbach K, Leal MC, Calado, R, Repolho T. Early-life exposure to climate change impairs tropical shark survival. Proceedings of the Royal Society B: Biol. Sci. 2014;281(1793):20141738–20141738.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saidï B, Nejmeddine Bradeï M, Bouaïn A. Reproductive biology and diet of Mustelus punctulatus from the Gulf of Gabès, central Mediterranean Sea. Sci Mar. 2009;73:249–58.

    Article  Google Scholar 

  • Santo D. Ocean acidification exacerbates the impacts of global warming on embryonic little skate, Leucoraja erinacea. J Exp Mar Biol Ecol. 2015;463:72–8.

    Article  Google Scholar 

  • Sato K, Nakamura M, Tomita T, Toda M, Miyamoto K, Nozu R. How great white sharks nourish their embryos to a large size: evidence of lipid histotrophy in lamnoid shark reproduction. Biol Open. 2016;5:1211–5. https://doi.org/10.1242/bio.017939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz FJ. Mass migratory congregations and movements of several species of cownose rays, Genus Rhinoptera: a world-wide review. J Elisha Mitchell Sci Soc. 1990;106:10–3.

    Google Scholar 

  • Sheldon JD, Allender MC, George RH, Bulman F, Abney K. Reproductive hormone patterns in male and female cownose rays (Rhinoptera bonasus) in an aquarium setting and correlation to ultrasonographic staging. J Zoo Wildl Med. 2018;49:638–47.

    Article  PubMed  Google Scholar 

  • Shiba K, Shibata D, Inaba K. Autonomous changes in the swimming direction of sperm in the gastropod Strombus luhuanus. J Exp Biol. 2014;21:986–96.

    Article  Google Scholar 

  • Shields C. Reproductive biology of the tiger shark in the Western Atlantic Ocean. UNF graduate theses and dissertations. 2018. https://digitalcommons.unf.edu/etd/818.

  • Smith JW, Merriner JV. Observations on the reproductive biology of the cownose ray, Rhinoptera bonasus, in the lower Chesapeake Bay. Fish Bull. 1986;84:871–7.

    Google Scholar 

  • Sulikowski JA, Kneebone J, Elzey S, Jurek J, Howell WH, Tsang PCW. Using the composite variables of reproductive morphology, histology and steroid hormones to determine age and size at sexual maturity for the thorny skate Amblyraja radiata in the western Gulf of Maine. J Fish Biol. 2006;69:1449–65.

    Article  CAS  Google Scholar 

  • Sulikowski JA, Driggers WB III, Ingram GW Jr, Kneebone J, Fergusen DE, Tsang PCW. Profiling plasma steroid hormones: a non-lethal approach for the study of skate reproductive biology and its potential use in conservation management. Environ Biol Fish. 2007;80:285–92.

    Article  Google Scholar 

  • Sulikowski JA, Wheeler CR, Gallagher AJ, Prohaska BK, Langan JA, Hammerschlag N. Seasonal and life-stage variation in the reproductive ecology of a marine apex predator, the tiger shark, Galeocerdo cuvier, at a protected female-dominated site. Aquat Biol. 2016;24:175–84.

    Article  Google Scholar 

  • Tanaka S, Shiobara Y, Hioli S, Abe H, Nishi G, Yano K, Suzuki K. The reproductive biology of the frilled shark, Chlamydoselachus anguineus from Suruga Bay, Japan. Jpn J Ichthyol. 1990;37:273–91.

    Google Scholar 

  • Tanaka S, Kurokawa H, Masako H. Comparative morphology of the sperm in chondrichthyan fishes. Mémoires Du Muséum National d’Histoire Naturelle. 1995;166:321–32.

    Google Scholar 

  • Tomita T, Murakumo K, Ueda K, Ashida H, Furuyama R. Locomotion is not a privilege after birth: ultrasound images of viviparous shark embryos swimming from one uterus to the other. Ethology. 2018;00:1–5.

    Google Scholar 

  • Tricas C, Maruska KP, Rasmussen LEL. Annual cycles of steroid hormone production, gonad development, and reproductive behavior in the Atlantic stingray. Gen Comp Endocrinol. 2000;118:209–25.

    Article  CAS  PubMed  Google Scholar 

  • Ueda K, Yanagisawa M, Murakumo K, Matsumoto Y, Sato K, Uchida S. Physical examination, blood sampling, and sedation of large elasmobranchs. In: The Elasmobranch Husbandry Manual II: recent advances in the care of sharks, rays and their relatives, vol. 26; 2017. p. 255–62.

    Google Scholar 

  • Volkoff H, Wourms JP, Amesbury E, Snelson FF. Structure of the thyroid gland, serum thyroid hormones, and the reproductive cycle of the Atlantic stingray, Dasyatis sabina. J Exp Zool. 1999;284:505–16.

    Article  CAS  PubMed  Google Scholar 

  • Walker TI. Spatial and temporal variation in the reproductive biology of gummy shark Mustelus antarticus (Chondrichthyes:Triakidae) harvested off southern Australia. Mar Freshw Res. 2007;58:67–97.

    Article  Google Scholar 

  • Wallman HL, Bennett WA. Effects of parturition and feeding on thermal preference of Atlantic stingray Dasyatis sabina Lesueur. Environ Biol Fish. 2006;75:259–67.

    Article  Google Scholar 

  • Whittamore JM, Bloomer C, Hanna GM, McCarthy ID. Evaluating ultrasonography as a non-lethal method for the assessment of maturity in oviparous elasmobranchs. Mar Biol. 2010;157:2613–24.

    Article  Google Scholar 

  • Woodhead AD. Thyroid activity in the ovo-vivparous elasmobranch Squalus acanthias. J Zool. 1966;148:238–75.

    Article  Google Scholar 

  • Wourms JP. Reproduction and development of chondrichthyan fishes. Am Zool. 1977;17:379–410.

    Article  Google Scholar 

  • Yamaguchi A, Tanuichi T, Shimizu M. Geographic variations in the reproductive parameters of the starspotted dogfish, Mustelus manazo, from five localities in Japan and in Taiwan. Environ Biol Fish. 2004;57:221–33.

    Article  Google Scholar 

Download references

Acknowledgements

There are numerous elasmobranch scientists who have been working in this field for far longer than us and we are grateful to them all for their work that has influenced our studies. We are also grateful to Jim Gelsleichter and James Sulikowski for their thoughtful edits and additions to this manuscript. We are especially indebted to the combined efforts of the dedicated staff of AZA institutions that have funded and supported elasmobranch research, especially the Sand Tiger Shark Consortium [North Carolina Aquariums, Florida Aquarium, Georgia Aquarium and affiliate Marineland Dolphin Adventure, Ripley’s Aquariums, New York Aquarium, Norwalk Aquarium, Aquarium of the Pacific, Adventure Aquarium, National Aquarium, Shark Reef at Mandalay Bay, Jenkinson’s Aquarium, Minnesota Zoo and Aquariums and Omaha’s Henry Doorly Zoo]. We are grateful for in situ samples collected through collaboration and support from North Carolina Aquariums, Ripley’s Aquariums, the National Aquarium and the Cooperative Atlantic States Pupping and Nursery Survey (COASTSPAN) and Cooperative Shark Tagging Program (CSTP) administered by the Apex Predators Program (APP). We especially thank the Morris Animal Foundation and SeaWorld/Busch Gardens Conservation Fund for critical funding to support this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda M. Penfold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Penfold, L.M., Wyffels, J.T. (2019). Reproductive Science in Sharks and Rays. In: Comizzoli, P., Brown, J., Holt, W. (eds) Reproductive Sciences in Animal Conservation. Advances in Experimental Medicine and Biology, vol 1200. Springer, Cham. https://doi.org/10.1007/978-3-030-23633-5_15

Download citation

Publish with us

Policies and ethics