Skip to main content

The Mass Decontamination Paradigm: Response Relating to Gas Phase Exposures and Skin Decontamination

  • Chapter
  • First Online:
Skin Decontamination

Abstract

This chapter describes the nature of gas exposure and the implications for decontamination of exposed persons in hazardous materials incidents. An approach for systematic investigation of gas-skin interaction is outlined and findings presented for ten common substances. The limitations and applicability of this approach for first responder advice are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, the terms gas and vapor are used interchangeably. A vapor refers to the gaseous form of a substance that is a liquid or solid at room temperature.

References

  1. Levitin HW, Siegelson HJ, Dickinson S, Halpern P, Haraguchi Y, Nocera A, Turineck D. Decontamination of mass casualties—re-evaluating existing dogma. Prehosp Disaster Med. 2003;18(3):200–7.

    Article  Google Scholar 

  2. Kirk MA, Deaton ML. Bringing order out of chaos: effective strategies for medical response to mass chemical exposure. Emerg Med Clin North Am. 2007;25(2):527–48.

    Article  Google Scholar 

  3. Okumura T, Suzuki K, Fukuda A, et al. The Tokyo subway sarin attack: disaster management, Part 2: hospital response. Acad Emerg Med. 1998;5:618–24.

    Article  CAS  Google Scholar 

  4. Edwards J, Pisaniello D, Barton R, et al. Hazardous materials emergency incidents in South Australia, 1997–2000. Appl Env Sci Public Health. 2003;1:63–7.

    Google Scholar 

  5. Gaskin S, Pisaniello D, Edwards JW, Bromwich D, Reed S, Logan M, Baxter C. Application of skin contamination studies of ammonia gas for management of hazardous material incidents. J Hazard Mater. 2013a;252:338–46.

    Article  Google Scholar 

  6. Baxter C. Skin Decontamination, Presentation to the Executive Committee of the Memorandum of Understanding Concerning Combating Terrorism Research and Development between the Depart of Defense of the United States of America and the Department of Defence of Australia. 2008.

    Google Scholar 

  7. Houston M, Hendrickson R. Decontamination. Crit Care Clin. 2005;ll:653–72.

    Article  Google Scholar 

  8. Makarovsky I, Markel G, Dushnitsky T, Eisenkraft A. Ammonia – when something smells wrong. Isr Med Assocl J. 2008;10:537–43.

    Google Scholar 

  9. Agency for Toxic Substances and Disease Registry. Hazardous substances emergency events surveillance. Annual Report. Atlanta, GA; 2007.

    Google Scholar 

  10. Feldman R. Chemical agent simulant release from clothing following vapor exposure. Acad Emerg Med. 2010;17:221–4.

    Article  Google Scholar 

  11. Markel, G., Krivoy, A., Rotman, E. et al. 2008. Medical management of toxicological mass casualty events. 10, pp. 761–766.

    Google Scholar 

  12. Bronaugh RL, Congdon ER, Scheuplein RJ. The effect of cosmetic vehicles on the penetration of N-Nitrosodiethanolamine through excised human skin. J Invest Dermatol. 1981;76(2):94–6.

    Article  CAS  Google Scholar 

  13. Pont AR, Charron AR, Brand RM. Active ingredients in sunscreens act as topical penetration enhancers for the herbicide 2,4-dichlorophenoxyacetic acid. Toxicol Appl Pharmacol. 2004;195:348–54.

    Article  CAS  Google Scholar 

  14. Gaskin S, Pisaniello D, Edwards JW, Bromwich D, Reed S, Logan M, Baxter C. Chlorine and hydrogen cyanide gas interactions with human skin: in vitro studies to inform skin permeation and decontamination in HAZMAT incidents. J Hazard Mater. 2013b;262:759–65.

    Article  CAS  Google Scholar 

  15. Loretz LJ, et al. Exposure data for cosmetic products: facial cleanser, hair conditioner, and eye shadow. Food Chem Toxicol. 2008;46:1516–24.

    Article  CAS  Google Scholar 

  16. Loretz LJ, et al. Exposure data for cosmetic products: lipstick, body lotion, and face cream. Food Chem Toxicol. 2005;43:279–91.

    Article  CAS  Google Scholar 

  17. Bonnist EY, Gorce JP, Mackay C, Pendlington RU, Pudney PD. Measuring the penetration of a skin sensitizer and its delivery vehicles simultaneously with confocal Raman spectroscopy. Skin Pharmacol Physiol. 2011;24(5):274–83.

    Article  CAS  Google Scholar 

  18. Organization for Economic Co-operation and Development (OECD) 2004. Guidance document for the conduct of skin absorption studies. OECD series on testing and assessment. Number 28. Joint meeting of the chemicals committee and the working party on chemicals, pesticides and biotechnology.

    Google Scholar 

  19. Gaskin S, Pisaniello D, Edwards JW, Bromwich D, Reed S, Logan M, Baxter C. In-vitro methods for testing dermal absorption and penetration of toxic gases. Toxicol Mech Methods. 2014;24(1):70–2.

    Article  CAS  Google Scholar 

  20. Gaskin S, Heath L, Pisaniello D, Evans R, Edwards JW, Logan M, Baxter C. Hydrogen sulphide and phosphine interactions with human skin in vitro application to hazardous material incident decision making for skin decontamination. Toxicol Ind Health. 2016:1–8.

    Google Scholar 

  21. Byford T. Environmental health criteria 235: dermal absorption. Int J Environ Stud. 2009;66:662–3.

    Article  Google Scholar 

  22. Bronaugh RL, Stewart RF, Simon M. Methods for in vitro percutaneous absorption studies VII: use of excised human skin. J Pharm Sci. 1986;75(11):1094–7.

    Article  CAS  Google Scholar 

  23. Davies DJ, Ward RJ, Heylings JR. Multi-species assessment of electrical resistance as a skin integrity marker for in vitro percutaneous absorption studies. Toxicol In Vitro. 2004;18(3):351–8.

    Article  CAS  Google Scholar 

  24. Diembeck W, Beck H, Benech-Kieffer F, Courtellemont P, Dupuis J, Lovell W, Paye M, Spengler J, Steiling W. Test guidelines for in vitro assessment of dermal absorption and percutaneous penetration of cosmetic ingredients. Food Chem Toxicol. 1999;37(2):191–205.

    Article  CAS  Google Scholar 

  25. Lawrence JN. Electrical resistance and tritiated water permeability as indicators of barrier integrity of in vitro human skin. Toxicol In Vitro. 1997;11(3):241–9.

    Article  CAS  Google Scholar 

  26. Fasano WJ, Hinderliter PM. The Tinsley LCR Databridge model 6401 and electrical impedance measurements to evaluate skin integrity in vitro. Toxicol In Vitro. 2004;18(5):725–9.

    Article  CAS  Google Scholar 

  27. Pisaniello D. The generation of test atmospheres for occupational hygiene laboratory evaluation of organic vapor monitoring devices. Report prepared for the Occupational Health and Radiation Control Branch, South Australian Health Commission. 1988. Available online: www.adelaide.edu.au/oeh/research/testatmon88.pdf.

  28. Council of Australian Governments List of Security Sensitive Materials. Available online: https://www.nationalsecurity.gov.au/ChemicalSecurity/Pages/default.aspx.

  29. UK Home Office Poisons and Precursors Lists. Available online: https://www.gov.uk/government/consultations/precursors-and-poisons-consultations.

  30. US Department of Homeland Security. Chemicals of Interest List. Available online: https://www.dhs.gov/publication/cfats-coi-list.

  31. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for sulfur dioxide. Atlanta: U.S. Department of Health and Human Services, Public Health Service; 1998.

    Google Scholar 

  32. Gunnison AF, Jacobsen DW, Schwartz HJ. Sulfite hypersensitivity. A critical review. CRC Crit Rev Toxicol. 1987;17(3):185–214.

    Article  CAS  Google Scholar 

  33. Du Z, Meng Z. Effects of derivatives of sulfur dioxide on transient outward potassium currents in acutely isolated hippocampal neurons. Food Chem Toxicol. 2004;42(8):1211.

    Article  CAS  Google Scholar 

  34. Dugard P. The absorption of cyanide through human skin in vitro from solutions of sodium cyanide and gaseous HCN. In: Marrs T, Ballantyne B, editors. Clinical and experimental toxicology of cyanides. Bristol: John Wright; 1987. p. 127–37.

    Google Scholar 

  35. Walton C, Witherspoon M. Skin absorption of certain gases. J Pharmacol Exp Ther. 1925;26:315–24.

    CAS  Google Scholar 

  36. Fairley A, Linton E, Wild F. The absorption of hydrocyanic acid vapour through the skin: with notes on other matters relating to acute cyanide poisoning. J Hyg. 1934;34:283–94.

    Article  CAS  Google Scholar 

  37. Schutze W. Deleterious action through the skin of poisonous gases at high concentrations (carbon monoxide, hydrogen sulfide, hydrocyanic acid, and aniline). Arch Hygiene. 1927;98:70.

    CAS  Google Scholar 

  38. Eberlein-Konig B, Przybilla B, Kuhnel P, et al. Influence of airborne nitrogen dioxide or formaldehyde on parameters of skin function and cellular activation in patients with atopic eczema and control subjects. J Allergy Clin Immunol. 1998;101:141–3.

    Article  CAS  Google Scholar 

  39. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Bromomethane. Atlanta: US Public Health Service; 1992.

    Google Scholar 

  40. Jordi AU. Absorption of methyl bromide through the intact skin; a report of one fatal and two non-fatal cases. J Aviat Med. 1953;24(6):536–9.

    CAS  PubMed  Google Scholar 

  41. Hezemans-Boer M, Toonstra J, Meulenbelt J, Zwaveling JH, Sangster B, van Vloten WA. Skin lesions due to exposure to methyl bromide. Arch Dermatol. 1988;124(6):917–21.

    Article  CAS  Google Scholar 

  42. American Conference of Governmental Industrial Hygienists (ACGIH), 2011. Documentation of the Threshold Limit Values and Biological Exposure Indices, 7th Edition, 2011 Supplement, Document number 0100DocS11, ACGIH.

    Google Scholar 

  43. US EPA. Sulfuryl Fluoride (Vikane®) RIisk Characterisation Document,Volume II, Exposure Assessment, Worker Health and Safety Branch, Department of Pesticide Regulation California Environmental Protection Agency.

    Google Scholar 

  44. American Public Health Association (APHA). Standard methods for the examination of water and wasterwater 4110B: determination of anions by ion chromatography. 18th ed. Washington, DC: APHA; 1992.

    Google Scholar 

  45. te Brake L, Gaskin S, Pisaniello D, Edwards J, Bromwich D, Reed S, Scheepers P. Effects of street clothing, sunscreen, and temperature on skin absorption of organophosphate pesticides–a review and case study of diazinon. J Health Safety Res Pract. 2012;4:10–8.

    Google Scholar 

  46. Noll GG, Hildebrand MS, Rudner G, Schnepp R. Hazardous materials: managing the incident: New York, USA: Jones & Bartlett Publishers; 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharyn Gaskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baxter, C., Gaskin, S., Logan, M., Pisaniello, D. (2020). The Mass Decontamination Paradigm: Response Relating to Gas Phase Exposures and Skin Decontamination. In: Zhu, H., Maibach, H. (eds) Skin Decontamination. Springer, Cham. https://doi.org/10.1007/978-3-030-24009-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24009-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24008-0

  • Online ISBN: 978-3-030-24009-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics