Skip to main content

Optical Band-to-Band Transitions

  • Chapter
  • First Online:
Semiconductor Optics 1

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2182 Accesses

Abstract

The optical constants and the dielectric function of semiconductors are over a wide range of photon energies determined by electronic transitions between various bands of the band structure. We will describe here the theoretical approach to treat these transitions arriving finally at an expression for the absorption coefficient. We will introduce the joint density of states and its critical points leading to prominent structures (van Hove-singularities) in the dielectric function. In the experimental section we will illustrate methods to determine optical functions (ellipsometry and modulation spectroscopy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Brust, J.C. Phillips, F. Bassani, Phys. Rev. Lett. 9, 94 (1962)

    Article  ADS  Google Scholar 

  2. F. Wooten, Optical Properties of Solids (Academic, New York, 1972)

    Google Scholar 

  3. D.E. Aspnes, A.A. Studna, Phys. Rev. B 7, 4605 (1973)

    Article  ADS  Google Scholar 

  4. D.E. Aspnes, Surf. Sci. 37, 418 (1973)

    Google Scholar 

  5. D.E. Aspnes, A.A. Studna, Phys. Rev. B 27, 985 (1983)

    Article  ADS  Google Scholar 

  6. J.S. Blakemore, Semiconductor Statistics (Dover Publication, Dover, 1987)

    MATH  Google Scholar 

  7. F.H. Pollak, O.J. Glembocki, Proc. SPIE 0946, 1 (1988)

    Google Scholar 

  8. M.L. Cohen, J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, vol. 75, 2nd edn., Springer Series in Solid State Sciences (Springer, New York, 1989)

    Book  Google Scholar 

  9. J.M.A. Gilman, A. Hamnett, R.A. Batchelor, Phys. Rev. B 46, 13363 (1992)

    Article  ADS  Google Scholar 

  10. T.J.C. Hosea, Phys. Status Solidi B 182, 43 (1994)

    Google Scholar 

  11. F. Pollak, Modulation spectroscopy of semiconductors and semiconductor microstructures. Optical Properties of Semiconductors, vol. 2. Handbook on Semiconductors (North Holland, Amsterdam, 1994)

    Google Scholar 

  12. P.K. Basu, Theory of Optical Processes in Semiconductors: Bulk and Microstructures (Oxford University Press, Oxford, 2002)

    Google Scholar 

  13. M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures (Springer, Berlin, 2004)

    Google Scholar 

  14. H. Kuzmany, Solid State Spectroscopy, 2nd edn. (Springer, Berlin, 2009)

    Book  Google Scholar 

  15. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, 4th edn. (Springer, Heidelberg, 2010)

    Book  Google Scholar 

  16. C. Krämmer, Optoelectronic Characterization of Thin-Film Solar Cells by Electroreflectance and Photoluminescence Spectroscopy. Dissertation, Karlsruhe Institute of Technology KIT (2015)

    Google Scholar 

  17. C. Krämmer, C. Huber, A. Redinger, D. Sperber, G. Rey, S. Siebentritt, H. Kalt, M. Hetterich, Appl. Phys. Lett. 107, 222104 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Kalt .

Problems

Problems

16.1

Calculate the effective density of states, i.e., the onset of degeneracy, for electrons and holes at 10 K and at room temperature in bulk GaAs and ZnSe.

16.2

Calculate the effective density of states for the case of electrons and holes in Si and Ge at room temperature. Pay attention to the presence of equivalent conduction-band minima and find a suitable scheme to average over transverse and longitudinal masses.

16.3

Verify the type of the different critical points in Fig. 16.3a and try to construct qualitatively the imaginary part of the dielectric function for Ge as shown in (b). Try the same for GaAs by comparison of Fig. Ell.2 with Fig. 15.8.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalt, H., Klingshirn, C.F. (2019). Optical Band-to-Band Transitions. In: Semiconductor Optics 1. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-24152-0_16

Download citation

Publish with us

Policies and ethics