Skip to main content

Mast Cells in Arteriogenesis

  • Chapter
  • First Online:
The Mast Cell
  • 383 Accesses

Abstract

Arteriogenesis is defined as the growth of functional collateral arteries from pre-existing arterio-arteriolar anastomoses. It is induced as a consequence of stenosis or occlusion of a major artery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214:149–160

    Article  CAS  Google Scholar 

  • Buschmann I, Pries A, Styp-Rekowska B et al (2010) Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development 137:2187–2196

    Article  CAS  Google Scholar 

  • Cai W-J, Vosschulte R, Afsah-Hedjri A et al (2000) Altered balance between extracellular proteolysis and antiproteolysis is associated with adaptive coronary arteriogenesis. J Mol Cell Cardiol 32:997–1011

    Article  CAS  Google Scholar 

  • Cao R, BrÃ¥kenhielm E, Pawliuk R et al (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9:604–613

    Article  CAS  Google Scholar 

  • Chen Z, Rubin J, Tzima E (2010) Role of PECAM-1 in arteriogenesis and specification of preexisting collaterals. Circ Res 107:1355–1363

    Article  CAS  Google Scholar 

  • Chillo O, Kleinert Eike C, Lautz T et al (2016) Perivascular mast cells govern shear stress-induced arteriogenesis by orchestrating leukocyte function. Cell Rep 16:2197–2207

    Article  CAS  Google Scholar 

  • Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521

    Article  CAS  Google Scholar 

  • de Groot D, Pasterkamp G, Hoefer IE (2009) Cardiovascular risk factors and collateral artery formation. Eur J Clin Invest 39:1036–1047

    Article  Google Scholar 

  • Deindl E, Buschmann I, Hoefer IE et al (2001) Role of Ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ Res 89:779–786

    Article  CAS  Google Scholar 

  • Egginton S, Zhou AL, Brown MD et al (2001) Unorthodox angiogenesis in skeletal muscle. Cardiovasc Res 49:634–646

    Article  CAS  Google Scholar 

  • Hansen-Smith F, Egginton S, Zhou AL et al (2001) Growth of arterioles precedes that of capillaries in stretch-induced angiogenesis in skeletal muscle. Microvasc Res 62:1–14

    Article  CAS  Google Scholar 

  • Heil M, Ziegelhoeffer T, Wagner S et al (2004) Collateral artery growth (Arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-Chemokine Receptor-2. Circ Res 94:671–677

    Article  CAS  Google Scholar 

  • Heissig B, Rafii S, Akiyama H et al (2005) Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9–mediated progenitor cell mobilization. J Exp Med 202:739–750

    Article  CAS  Google Scholar 

  • Hoefer IE (2002) Direct evidence for tumor necrosis factor-alpha signaling in arteriogenesis. Circulation 105:1639–1641

    Article  CAS  Google Scholar 

  • Hur J, Yoon CH, Kim HS et al (2003) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscl Thromb Vasc Biol 24:288–293

    Article  Google Scholar 

  • Kastrup J, Jørgensen E, Drvota V (2001) Vascular growth factor and gene therapy to induce new vessels in the ischemic myocardium. Therapeutic angiogenesis. Scan Cardiovasc J 35:291–296

    Article  CAS  Google Scholar 

  • Kinnaird T (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685

    Article  CAS  Google Scholar 

  • Kinoshita M (2005) Mast cell tryptase in mast cell granules enhances MCP-1 and Interleukin-8 production in human endothelial cells. Arterioscl Thromb Vasc Biol 25:1858–1863

    Article  CAS  Google Scholar 

  • Kitamura Y, Go S, Hatanaka K (1978) Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 52:447–452

    CAS  PubMed  Google Scholar 

  • Kusch A, Tkachuk S, Lutter S et al (2002) Monocyte-expressed urokinase regulates human vascular smooth muscle cell migration in a coculture model. Biol Chem 383:217–221

    Article  CAS  Google Scholar 

  • Lanahan A, Zhang X, Fantin A et al (2013) The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev Cell 25:156–168

    Article  CAS  Google Scholar 

  • Limbourg A, Korff T, Napp LC et al (2009) Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nat Prot 4:1737–1748

    Article  CAS  Google Scholar 

  • Mierke CT, Ballmaier M, Werner U et al (2000) Human endothelial cells regulate survival and proliferation of human mast cells. J Exp Med 192:801–812

    Article  CAS  Google Scholar 

  • Ren B, Deng Y, Mukhopadhyay A et al (2010) ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. J Clin Invest 120:1217–1228

    Article  CAS  Google Scholar 

  • Resnick N, Yahav H, Shay-Salit A et al (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81:177–199

    Article  Google Scholar 

  • Ribatti D, Nico B, Crivellato E et al (2007a) Macrophages and tumor angiogenesis. Leukemia 21:2085–2089

    Article  CAS  Google Scholar 

  • Ribatti D, Finato N, Crivellato E et al (2007b) Angiogenesis and mast cells in human breast cancer sentinel lymph nodee with and without micrometastasis. Histopathology 51:837–842

    Article  CAS  Google Scholar 

  • Ribatti D, Levi-Schaffer F, Kovanen PT (2008) Inflammatory angiogenesis in atherogenesis—a double-edged sword. Ann Med 40:606–621

    Article  CAS  Google Scholar 

  • Schaper W, Scholz D (2003) Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol 23:1143–1151

    Article  CAS  Google Scholar 

  • Scholz D, Ito W, Fleming I et al (2000) Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (Arteriogenesis). Virchows Arch 436:257–270

    Article  CAS  Google Scholar 

  • Scholz D, Ziegelhoeffer T, Helisch A et al (2002) Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol 34:775–787

    Article  CAS  Google Scholar 

  • Simons M, Eichmann A (2015) Molecular controls of arterial morphogenesis. Circ Res 116:1712–1724

    Article  CAS  Google Scholar 

  • Stabile E (2003) Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation 108:205–210

    Article  Google Scholar 

  • Stabile E (2005) CD8+ T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4+ mononuclear cells through the expression of Interleukin-16. Circulation 113:118–124

    Article  Google Scholar 

  • Takeda Y, Costa S, Delamarre E et al (2011) Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479:122–126

    Article  CAS  Google Scholar 

  • Topper JN, Gimbrone MA Jr (1999) Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol Med Today 5:40–46

    Article  CAS  Google Scholar 

  • Tronc F, Wassef M, Esposito B et al (1996) Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol 16:1256–1262

    Article  CAS  Google Scholar 

  • van Royen N, Piek JJ, Buschmann I et al (2001) Stimulation of arteriogenesis; A new concept for the treatment of arterial occlusive disease. Cardiovasc Res 49:543–553

    Article  Google Scholar 

  • van Weel V, Toes REM, Seghers L et al (2007) Natural killer cells and CD4+ T-cells modulate collateral artery development. Arterioscl Thromb Vasc Biol 27:2310–2318

    Article  Google Scholar 

  • Wolf C, Cai WJ, Vosschulte R et al (1998) Vascular remodeling and altered protein expression during growth of coronary collateral arteries. J Mol Cell Cardiol 30:2291–2305

    Article  CAS  Google Scholar 

  • Zheng W, Christensen LP, Tomanek RJ (2008) Differential effects of cyclic and static stretch on coronary microvascular endothelial cell receptors and vasculogenic/angiogenic responses. Am J Physiol Heart Circ Physiol 295:H794–H800

    Article  CAS  Google Scholar 

  • Ziegelhoeffer T (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 94:230–238

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribatti, D. (2019). Mast Cells in Arteriogenesis. In: The Mast Cell . Springer, Cham. https://doi.org/10.1007/978-3-030-24190-2_6

Download citation

Publish with us

Policies and ethics