Skip to main content

Role of Heat Shock Proteins (HSP) in Neuroprotection for Ischemic Stroke

  • Chapter
  • First Online:
Heat Shock Proteins in Neuroscience

Part of the book series: Heat Shock Proteins ((HESP,volume 20))

Abstract

Heat shock proteins (HSP) are upregulated early in response to many insults, including ischemic stroke. This upregulation allows cells to survive potentially lethal conditions via its chaperone functions which can assist in nascent protein folding and the prevention of protein aggregation. After ischemic stroke, HSP can directly interact with various proteins of the tightly regulated programmed cell death known as apoptosis. HSP70 also acts to modulate the inflammatory response following ischemic stroke. The 70 kDa inducible HSP also known as HSP70, has likely been the most extensively evaluated. HSP70 was shown to correlate to the phenomenon of induced tolerance. Studies in genetic mutant models or overexpression using gene transfer or heat stress, further showed that HSP70 led to improvements in brain cell survival. Pharmacological inducers of HSP70 demonstrated similar salutary effects in stroke models, and suggest that this approach has some translational value. Some of these pharmacological inducers have already been studied in humans for treatment of other conditions. Therefore, HSP seem to be neuroprotective, and should be further explored as a potential therapy against stroke and other neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-AAG:

17-(Allylamino) geldanamycin

17-DMAG:

17-(2-dimethylaminoethyl) amino-17-demethoxygeldanamycin

AIF:

apoptosis inducing factor

Apaf-1:

apoptosis protease activating factor-1

AP-1:

activator portien-1

ATP:

adenosine triphosphate

BBB:

blood brain barrier

DIABLO/smac:

direct IAP-binding mitochondrial protein/second mitochondria-derived activator of caspases

GA:

geldanamycin

GGA:

geranylgeranylacetone

HO-1:

heme oxygenase-1

HSC:

heat shock cognate

HSF:

heat shock factor

HSP:

heat shock protein

smHSP:

small molecular HSP

IkB:

inhibitor of kappaB

IKK:

IkB kinase

IL-1:

interleukin-1

LOX-1:

low density lipoprotein receptor-1

NO:

nitric oxide

iNOS:

inducible nitric oxide synthase

JNK:

c-Jun N-terminal kinase

MCA:

middle cerebral artery

MMP:

matrix metalloproteinase

NADPH:

nicotinamide adenine dinucleotide phosphate

NF-kB:

nuclear factor-kappaB

iNOS:

inducible nitric oxide synthase

OGD:

oxygen glucose deprivation

PKB:

protein kinase B

ROS:

reactive oxygen species

STAT-1:

signal transducer and activator of transcription factor-1

TLR:

Toll-like receptor

TNF:

tumor necrosis factor

References

  • An JJ, Lee YP, Kim SY, Lee SH, Lee MJ, Jeong MS, Kim DW, Jang SH, Yoo KY, Won MH et al (2008) Transduced human PEP-1-heat shock protein 27 efficiently protects against brain ischemic insult. FEBS J 275:1296–1308

    Article  CAS  PubMed  Google Scholar 

  • Asea A (2008) Heat shock proteins and toll-like receptors. Handb Exp Pharmacol:111–127

    Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  CAS  PubMed  Google Scholar 

  • Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Simon R (1997) Ischemic tolerance in the brain. Neurology 48:306–311

    Article  CAS  PubMed  Google Scholar 

  • Demand J, Alberti S, Patterson C, Hohfeld J (2001) Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 11:1569–1577

    Article  CAS  PubMed  Google Scholar 

  • Ding XZ, Fernandez-Prada CM, Bhattacharjee AK, Hoover DL (2001) Over-expression of hsp-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine 16:210–219

    Article  CAS  PubMed  Google Scholar 

  • Doeppner TR, Nagel F, Dietz GP, Weise J, Tonges L, Schwarting S, Bahr M (2009) TAT-Hsp70-mediated neuroprotection and increased survival of neuronal precursor cells after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 29:1187–1196

    Article  CAS  PubMed  Google Scholar 

  • Feinstein DL, Galea E, Aquino DA, Li GC, Xu H, Reis DJ (1996) Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. J Biol Chem 271:17724–17732

    Article  CAS  PubMed  Google Scholar 

  • Gaston JS (2002) Heat shock proteins and innate immunity. Clin Exp Immunol 127:1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geissler A, Krimmer T, Bomer U, Guiard B, Rassow J, Pfanner N (2000) Membrane potential-driven protein import into mitochondria. The sorting sequence of cytochrome b(2) modulates the deltapsi-dependence of translocation of the matrix-targeting sequence. Mol Biol Cell 11:3977–3991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giffard RG, Yenari MA (2004) Many mechanisms for hsp70 protection from cerebral ischemia. J Neurosurg Anesthesiol 16:53–61

    Article  PubMed  Google Scholar 

  • Giffard RG, Han RQ, Emery JF, Duan M, Pittet JF (2008) Regulation of apoptotic and inflammatory cell signaling in cerebral ischemia: the complex roles of heat shock protein 70. Anesthesiology 109:339–348

    Article  CAS  PubMed  Google Scholar 

  • Guzhova IV, Darieva ZA, Melo AR, Margulis BA (1997) Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2:132–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havasi A, Li Z, Wang Z, Martin JL, Botla V, Ruchalski K, Schwartz JH, Borkan SC (2008) Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 283:12305–12313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneka MT, Sharp A, Klockgether T, Gavrilyuk V, Feinstein DL (2000) The heat shock response inhibits NF-kappaB activation, nitric oxide synthase type 2 expression, and macrophage/microglial activation in brain. J Cereb Blood Flow Metab 20:800–811

    Article  CAS  PubMed  Google Scholar 

  • Howard M, Roux J, Lee H, Miyazawa B, Lee JW, Gartland B, Howard AJ, Matthay MA, Carles M, Pittet JF (2010) Activation of the stress protein response inhibits the STAT1 signalling pathway and iNOS function in alveolar macrophages: role of Hsp90 and Hsp70. Thorax 65:346–353

    Article  PubMed  Google Scholar 

  • Ivanov VN, Ronai Z, Hei TK (2006) Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis. J Biol Chem 281:1840–1852

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri K, Taldone T, Modi S, Chiosis G (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 1823:742–755

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Xiao W, Shi Y, Liu M, Xiao X (2005) Heat shock pretreatment inhibited the release of Smac/DIABLO from mitochondria and apoptosis induced by hydrogen peroxide in cardiomyocytes and C2C12 myogenic cells. Cell Stress Chaperones 10:252–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston JB, Jiang Y, van Marle G, Mayne MB, Ni W, Holden J, McArthur JC, Power C (2000) Lentivirus infection in the brain induces matrix metalloproteinase expression: role of envelope diversity. J Virol 74:7211–7220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones Q, Voegeli TS, Li G, Chen Y, Currie RW (2011) Heat shock proteins protect against ischemia and inflammation through multiple mechanisms. Inflamm Allergy Drug Targets 10:247–259

    Article  CAS  PubMed  Google Scholar 

  • Kelly S, Yenari MA (2002) Neuroprotection: heat shock proteins. Curr Med Res Opin 18(Suppl 2):s55–s60

    Article  PubMed  Google Scholar 

  • Kim N, Kim JY, Yenari MA (2012) Anti-inflammatory properties and pharmacological induction of Hsp70 after brain injury. Inflammopharmacology 20:177–185

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Yenari MA, Lee JE (2015) Regulation of inflammatory transcription factors by heat shock protein 70 in primary cultured astrocytes exposed to oxygen-glucose deprivation. Neuroscience 286:272–280

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kim N, Zheng Z, Lee JE, Yenari MA (2016) 70-kDa Heat Shock Protein Downregulates Dynamin in Experimental Stroke: A New Therapeutic Target? Stroke 47:2103–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Han Y, Lee JE, Yenari MA (2018) The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert Opin Ther Targets 22:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriz J, Lalancette-Hebert M (2009) Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol 117:497–509

    Article  CAS  PubMed  Google Scholar 

  • Lanneau D, Wettstein G, Bonniaud P, Garrido C (2010) Heat shock proteins: cell protection through protein triage. Sci World J 10:1543–1552

    Article  CAS  Google Scholar 

  • Latchman DS (2004) Protective effect of heat shock proteins in the nervous system. Curr Neurovasc Res 1:21–27

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kim M, Yoon BW, Kim YJ, Ma SJ, Roh JK, Lee JS, Seo JS (2001) Targeted hsp70.1 disruption increases infarction volume after focal cerebral ischemia in mice. Stroke 32:2905–2912

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Kim YJ, Kim JY, Lee WT, Yenari MA, Giffard RG (2004a) The 70 kDa heat shock protein suppresses matrix metalloproteinases in astrocytes. Neuroreport 15:499–502

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kwon HM, Kim YJ, Lee KM, Kim M, Yoon BW (2004b) Effects of hsp70.1 gene knockout on the mitochondrial apoptotic pathway after focal cerebral ischemia. Stroke 35:2195–2199

    Article  PubMed  Google Scholar 

  • Lianos GD, Alexiou GA, Mangano A, Mangano A, Rausei S, Boni L, Dionigi G, Roukos DH (2015) The role of heat shock proteins in cancer. Cancer Lett 360:114–118

    Article  CAS  PubMed  Google Scholar 

  • Manaenko A, Fathali N, Chen H, Suzuki H, Williams S, Zhang JH, Tang J (2010) Heat shock protein 70 upregulation by geldanamycin reduces brain injury in a mouse model of intracerebral hemorrhage. Neurochem Int 57:844–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, Sheldon RA, Vexler ZS, Ferriero DM, Weinstein PR, Liu J (2005) Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 25:899–910

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuma A, You JS, Yenari MA (2018) Targeting Reperfusion Injury in the Age of Mechanical Thrombectomy. Stroke 49:1796–1802

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouyang YB, Xu LJ, Sun YJ, Giffard RG (2006) Overexpression of inducible heat shock protein 70 and its mutants in astrocytes is associated with maintenance of mitochondrial physiology during glucose deprivation stress. Cell Stress Chaperones 11:180–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polla BS, Stubbe H, Kantengwa S, Maridonneau-Parini I, Jacquier-Sarlin MR (1995) Differential induction of stress proteins and functional effects of heat shock in human phagocytes. Inflammation 19:363–378

    Article  CAS  PubMed  Google Scholar 

  • Porter JR, Fritz CC, Depew KM (2010) Discovery and development of Hsp90 inhibitors: a promising pathway for cancer therapy. Curr Opin Chem Biol 14:412–420

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Han X, Liu HT, Chen T, Zhang JL, Yang P, Bo SH, Lu XT, Zhang J (2014) 17-Dimethylaminoethylamino-17-demethoxygeldanamycin attenuates inflammatory responses in experimental stroke. Biol Pharm Bull 37:1713–1718

    Article  CAS  PubMed  Google Scholar 

  • Ran R, Zhou G, Lu A, Zhang L, Tang Y, Rigby AC, Sharp FR (2004) Hsp70 mutant proteins modulate additional apoptotic pathways and improve cell survival. Cell Stress Chaperones 9:229–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rane MJ, Pan Y, Singh S, Powell DW, Wu R, Cummins T, Chen Q, McLeish KR, Klein JB (2003) Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 278:27828–27835

    Article  CAS  PubMed  Google Scholar 

  • Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jaattela M, Penninger JM, Garrido C, Kroemer G (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843

    Article  CAS  PubMed  Google Scholar 

  • Schepers H, Geugien M, van der Toorn M, Bryantsev AL, Kampinga HH, Eggen BJ, Vellenga E (2005) HSP27 protects AML cells against VP-16-induced apoptosis through modulation of p38 and c-Jun. Exp Hematol 33:660–670

    Article  CAS  PubMed  Google Scholar 

  • Sharp FR, Lu A, Tang Y, Millhorn DE (2000) Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 20:1011–1032

    Article  CAS  PubMed  Google Scholar 

  • Sharp FR, Zhan X, Liu DZ (2013) Heat shock proteins in the brain: role of Hsp70, Hsp 27, and HO-1 (Hsp32) and their therapeutic potential. Transl Stroke Res 4:685–692

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280:38729–38739

    Article  CAS  PubMed  Google Scholar 

  • Steel R, Doherty JP, Buzzard K, Clemons N, Hawkins CJ, Anderson RL (2004) Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J Biol Chem 279:51490–51499

    Article  CAS  PubMed  Google Scholar 

  • Stetler RA, Gao Y, Signore AP, Cao G, Chen J (2009) HSP27: mechanisms of cellular protection against neuronal injury. Curr Mol Med 9:863–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supko JG, Hickman RL, Grever MR, Malspeis L (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305–315

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya D, Hong S, Matsumori Y, Kayama T, Swanson RA, Dillman WH, Liu J, Panter SS, Weinstein PR (2003) Overexpression of rat heat shock protein 70 reduces neuronal injury after transient focal ischemia, transient global ischemia, or kainic acid-induced seizures. Neurosurgery 53:1179–1187. discussion 1187-1178

    Article  PubMed  Google Scholar 

  • Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K, Libert C (2002) HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16:685–695

    Article  PubMed  Google Scholar 

  • Voloboueva LA, Duan M, Ouyang Y, Emery JF, Stoy C, Giffard RG (2008) Overexpression of mitochondrial Hsp70/Hsp75 protects astrocytes against ischemic injury in vitro. J Cereb Blood Flow Metab 28:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Dore S (2007) Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 130:1643–1652

    Article  PubMed  Google Scholar 

  • Xu L, Giffard RG (1997) HSP70 protects murine astrocytes from glucose deprivation injury. Neurosci Lett 224:9–12

    Article  CAS  PubMed  Google Scholar 

  • Yasuda H, Shichinohe H, Kuroda S, Ishikawa T, Iwasaki Y (2005) Neuroprotective effect of a heat shock protein inducer, geranylgeranylacetone in permanent focal cerebral ischemia. Brain Res 1032:176–182

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Faden AI, Loane DJ, Lipinski MM, Sabirzhanov B, Stoica BA (2013) Neuroprotective effects of geranylgeranylacetone in experimental traumatic brain injury. J Cereb Blood Flow Metab 33:1897–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA (2008) Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28:53–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by grants from the National Institutes of Health (R01 NS 106441, RO3 NS101246), Department of Defense and the Veteran’s Merit Award (I01 BX000589) to MAY, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03933017) to JYK and a National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (NRF-2016M3C7A1905098) to JEL. Grants to MAY were administered by the Northern California Institute for Research and Education, and supported by resources of the Veterans Affairs Medical Center, San Francisco, California.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Eun Lee or Midori A. Yenari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, J.Y., Huang, M., Lee, J.E., Yenari, M.A. (2019). Role of Heat Shock Proteins (HSP) in Neuroprotection for Ischemic Stroke. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Neuroscience. Heat Shock Proteins, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-24285-5_6

Download citation

Publish with us

Policies and ethics