Skip to main content

Coatings

  • Chapter
  • First Online:
Aerospace Alloys

Abstract

The main coating systems used in aerospace gas turbine engines are presented. Coatings are fundamental to protect the surface of the structural components from several degradation factors, like oxidation, corrosion, wear, and erosion. The complexity of the environments and servicing conditions of gas turbine engines requires properties and materials performances that can be attained only through the deposition on structural components and hot parts of composite coating systems. Several of them involve metallic layers, although it is just thanks to a suitable combination of diverse materials, featuring altogether the full range of needed properties, that an effective part protection can be assured. Temperature, as usual, is paramount, since it determines the kinetics of all relevant transformations. Therefore, thermal barrier ceramic coatings are included in this chapter, since they are fundamental for lowering the temperature in the underlying metallic component. Still, the underlayer of a thermal barrier coating, the so-called bond coat, is metallic, and it is paramount as far as an adequate resistance to high-temperature corrosion phenomena is concerned. The main deposition techniques, whose selection is crucial for obtaining a good quality control and durability of the coating systems, are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allam I M et al (1979) Influence of small Pt additions on Al2O3 Scale Adherence. Oxidation of Metals 14: 517

    Article  Google Scholar 

  • Allen P B et al (1999) Diffusion, Locons and Propagons; Character of atomic Vibrations in amorphous Si. Philosophical Magazine B 79 (11–12): 1715–1731

    Article  CAS  Google Scholar 

  • Alman et al (2013) Erosion-resistant Nanocoatings for improved Energy Efficiency in Gas Turbines. U.S. Department of Energy

    Google Scholar 

  • Alperine S, Lelait L (1994) Microstructural Investigations of Plasma-sprayed Yttria partially stabilised Zirconia TBC. Transactions ASME: Journal of Engineering for Gas Turbines and Flows 116: 258–265

    CAS  Google Scholar 

  • Anderson P N, Sheffler K D (1983) Development of Strain Tolerant Thermal Barrier Coating Systems. Available via DIALOG. https://ntrs.nasa.gov/search.jsp?R=19840004244. Accessed 25 Jul 2017

  • Berry D et al (1995) Enhancing Performance of Silicon-modified Slurry Aluminides on Turbine Components operating in Marine Environments. In: International Gas Turbine and Aeroengine Congress and Exposition, Huston, Texas, 5–8 June 1995

    Google Scholar 

  • Borawski B et al (2011) The Influence of ductile interlayer Material on the Particle Erosion Resistance of Multilayer TiN based Coatings. Wear 271 (11–12): 2890–2898

    Article  CAS  Google Scholar 

  • Borom M P et al (1996) Role of Environmental Deposits and operating Surface Temperature in Spallation of Air Plasma sprayed Thermal Barrier Coatings. Surface and Coatings Technology 86–87 Part 1: 116–126

    Google Scholar 

  • Bose S (2007) High Temperature Coatings. Butterworth Heinemann

    Google Scholar 

  • Brendel et al (2008) MTU Solutions against Erosive Attack and Loss of EGT Margin in Turbo Engines-ER coat. MTU Technical Publication

    Google Scholar 

  • Bruce R W (1998) Development of 1232 °C (2250 F) Erosion and Impact Tests for Thermal Barrier Coatings. Tribology Transactions 41 (4): 399–410

    Article  CAS  Google Scholar 

  • Cao X Q et al. (2004) Ceramic Materials for Thermal Barrier Coatings. Journal of the European Ceramic Society 24 (1): 1–10

    Article  CAS  Google Scholar 

  • Chen M W et al (2003) Characterization and Modeling of a Martensitic Transformation in a Platinum modified Diffusion Aluminide bond Coat for Thermal Barrier Coatings. Acta Materialia 51 (14): 4279–4294

    Article  CAS  Google Scholar 

  • Chen X et al (2003) Foreign Object Damage in a Thermal Barrier System: Mechanisms and Simulations. Materials Science and Engineering A 352 (1–2): 221–231

    Article  CAS  Google Scholar 

  • Chen Y et al (2017) A Mechanistic Understanding on Rumpling of NiCoCrAlY bond Coat for Thermal Barrier Coating Applications. Acta Materialia 128: 31–42

    Article  CAS  Google Scholar 

  • Clarke D R (2003) Materials Selection Guidelines for low thermal Conductivity Thermal Barrier Coatings. Surface and Coatings Technology 163–164: 67–74

    Article  Google Scholar 

  • Clarke D R et al (2012) Thermal-barrier Coatings for more efficient Gas-turbine Engines. MRS Bulletin 37 (10):891–898

    Article  CAS  Google Scholar 

  • Cortez R et al (1999) Investigation of variable Amplitude Loading on Fretting Fatigue Behavior of Ti-6Al-4V. International Journal of Fatigue 21 (7): 709–717

    Article  CAS  Google Scholar 

  • Das D K (2013) Microstructure and High Temperature Oxidation Behavior of Pt-modified Aluminide bond Coats on Ni-base Superalloys. Progress in Materials Science 58 (2): 151–182

    Article  CAS  Google Scholar 

  • Davies H (1963) The Design and Development of the Thiocol XRL99 Rocket Engine for the X-15 Aircraft. Journal of the Royal Aeronautical Society 167: 79–91

    Article  Google Scholar 

  • Davis A W, Evans A G (2006) Effects of bond Coat Misfit Strains on the Rumpling of thermally grown Oxides. Metallurgical and Materials Transactions A 37 (7): 2085–2095

    Article  Google Scholar 

  • Deb P et al (1987) Surface Stability of Platinum Modified Aluminide Coatings during 1100 °C Cyclic Test. Journal of Vacuum Science and Technology A 5 (6): 3366–3372

    Article  CAS  Google Scholar 

  • Dobek L J (1973) Labyrynth Seal Testing for Lift Fan Engines. Available via DIALOG. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730007797.pdf. Accessed 4 September 2017

  • Dorfman M R et al (2008) Recent Development of High Temperature Thermal Spray Abradable Coatings. Ceramics Japan, The Ceramic Society of Jaan 43 (5): 389–395

    Google Scholar 

  • Driver M (2012) Coatings for Biomedical Applications. Woodhead Publishing Ltd, Cambridge (UK)

    Book  Google Scholar 

  • Dryepondt S, Pint B A (2010) Determination of the Ductile to Brittle Temperature Transition of Aluminide Coatings and its Influence on the mechanical Behavior of coated Specimens. Surface Coatings and Technology 205: 1195–1199

    Article  CAS  Google Scholar 

  • Duvall D S (1981) Processing Technology for Advanced Metallic and Ceramic Turbine Airfoil Coatings. In: Proceedings of 2nd Conference of Advanced Materials for Alternative-Fuel-Capable Heat Engines, Electric Power Research Institute, 24–28 August 1981

    Google Scholar 

  • Evans et al (2008) The Influence of Oxides on the Performance of Advanced Gas Turbines. Journal of the European Ceramic Society 28 (7): 1405–1419

    Article  CAS  Google Scholar 

  • Fauchais P L et al (2014) Thermal spray Fundamentals: From Powder to Part. Srpinger

    Google Scholar 

  • Felten E J (1976) Use of Platinum and Rhodium to improve Oxide Adherence on Ni-8Cr-6Al Alloys. Oxidation of Metals 10 (1): 23–28

    Article  CAS  Google Scholar 

  • Felten E J, Pettit F S (1976) Development, Growth, and Adhesion of Al2O3 on Platinum-Aluminum Alloys. Oxidation of Metals 10 (3): 189–223

    Article  CAS  Google Scholar 

  • Firdaouss M et al (2017) Tungsten Coating by ATC Plasma Spraying on CFC for WEST Tokamak. Physica Scripta T170

    Google Scholar 

  • Fountain J G et al (1976) The Influence of Platinum on the Maintenance of α-Al2O3 as a protective Scale. Oxidation of Metals 10 (5): 341–345

    Article  CAS  Google Scholar 

  • Galmiche P M (1975) US Patent 3,900,613

    Google Scholar 

  • Garrett E G, Gyorgak C A (1953) Adhesive and Protective Characteristics of Ceramic Coating A-417 and its Effects on Engine Life of Forged Refractory-26 (AMS 5760) and Cast Stellite (AMS 5385) Turbine Blades. Available via DIALOG. https://ntrs.nasa.gov/search.jsp?R=19930082087. Accessed 20 July 2017

  • Garvie R C et al (1972) Structure and Thermomechanical Properties of Partially Stabilized Zirconia in the CaO-ZrO2 System. Journal of the American Ceramic Society 55 (3) 152–157

    Article  CAS  Google Scholar 

  • Garvie R C et al (1975) Ceramic Steel? Nature 258: 703–704

    Article  CAS  Google Scholar 

  • Garvie RC, Goss M F (1986) Intrinsic Size Dependence of the Phase Transformation in Zirconia Microcrystals. Journal of Materials Science 21 (4): 1253–1257

    Article  CAS  Google Scholar 

  • Gauje G, Morbioli R (1983) Vapor Phase Aluminizing to Protect Turbine Airfoils. In: Singhal S C (ed) High Temperature Protective Coatings. The Metallurgical Society of AIME, Atlanta, GA, p 13–26

    Google Scholar 

  • Giggins C S, Pettit F S (1979) Hot Corrosion Degradation of Metals and Alloys – A Unified Theory. Pratt & Whitney

    Google Scholar 

  • Goward G W (1998) Progress in Coatings for Gas Turbine Airfoils. Surface and Coatings Technology 108-109: 73–79

    Article  CAS  Google Scholar 

  • Green D J et al (1989) Transformation Toughening of Ceramics. CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  • Guo H et al (2009) Thermo-physical and Thermal Cycling Properties of Plasma-sprayed BaLa2Ti3O10 Coating as Potential Thermal Barrier Materials. Surface and Coatings Technology 204 (5): 691–696

    Article  CAS  Google Scholar 

  • Gupta D K, Duvall D S (1984) A Silicon and Hafnium modified Plasma Sprayed MCrAlY Coating. In: Bricknell R H et al (eds) Superlloys. The Metallurgical Society of AIMR, Warrendale, PA, p 711–720

    Google Scholar 

  • Harrison W N (1947) Review of an Investigation of Ceramic Coatings for Metallic Turbine Parts and Other High Temperature Applications. Available via DIALOG. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930087630.pdf. Accessed 20 July 2017

  • Hazell B et al (2008) Development of improved bond Coat for enhanced Turbine Durability. Superalloys 2008: 753–760

    Google Scholar 

  • Heimann R B (2006) Plasma Spray Coating: Principles and Applications 2nd edn. Wiley VHC

    Google Scholar 

  • Helm D, Olaf Roder O (2007) Recent Titanium Research and Development in Germani. In: Ninomi M et al (ed) Ti-2007 Science and Technology. The Japan Institute of Metals, p 25–32

    Google Scholar 

  • Hermanek F J (2001) Thermal Spray Terminology and Origins. ASM International, Materials Park, OH

    Google Scholar 

  • Hjelm L N, Bornhorst B R (1961) Research-Airplane-Committee on Conference on the Progress of the X-15 Project. Available via DIALOG. https://ntrs.nasa.gov/search.jsp?R=19710070129. Accessed 20 July 2017

  • Hocking M G et al (1989) Metallic and Ceramic Coatings. Longman Scientific & Technical

    Google Scholar 

  • Ibegazene H et al (1993) Microstructure of Yttria stabilized Zirconia-Hafnia Plasma sprayed Thermal Barrier Coatings. Journal De Phisique IV 3: 1013–1016

    CAS  Google Scholar 

  • Jackson R W et al (2014) Thermal Barrier Coatings Adherence to Hf-modified B2 NiAl bond Coatings. Acta Materialia 80: 39–47

    Article  CAS  Google Scholar 

  • Jackson R W et al (2015) Interaction of molten Silicates with Thermal Barrier Coatings under Temperature Gradients. Acta Materialia 89: 396–407

    Article  CAS  Google Scholar 

  • Jarligo M O et al (2010) Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application. Journal of Thermal Spray Technology 19 (1–2): 303–310

    Article  CAS  Google Scholar 

  • Jorgensen D J et al (2016) Bond Coatings with high Rumpling Resistance: Design and Characterization. Surface and Coating Technology 300: 25–34

    Article  CAS  Google Scholar 

  • Joseph A D (1960) US Patent 3,102,044

    Google Scholar 

  • Kablow E N, Muboyadzhyan S A (2017) Erosion-Resistant Coatings for Gas Turbine Engine Compressor Blades. Russian Metallurgy 2017 (6): 494–504

    Article  Google Scholar 

  • Kakuda T R et al (2015) The Thermal Behavior of CMAS-infiltrated Thermal Barrier Coatings. Surface and Coatings Technology 272: 350–356

    Article  CAS  Google Scholar 

  • Kermapur A et al (2015) Failure Analysis of Ti6Al4V Gas Turbine Compressor Blades. Engineering Failure Analysis 15 (8): 1052–1064

    Article  CAS  Google Scholar 

  • Khanna A S (2002) Introduction to High Temperature Oxidation. ASM International

    Google Scholar 

  • Kingery W D (1955) Thermal Conductivity: Temperature Dependence of Conductivity for Single-phase Ceramics. Journal of the American Ceramic Society 38: 251–255

    Article  CAS  Google Scholar 

  • Krämer S et al (2008) Mechanism of Cracking and Delamination within Thermal Barrier Systems in Aeroengines subject to Calcium-Magnesium-Alumino-Silicate (CMAS) Penetration. Materials Science and Engineering A 490 (1–2): 26–35

    Article  CAS  Google Scholar 

  • Lammermann H, Kienel G (1991) PVD Coatings for Aircraft Turbine Blades. Advanced Materials and Processes 140 (6): 18–23

    Google Scholar 

  • Lattime S B, Steinetz B M (2004) Turbine Engine Clearance Control Systems: Current Practices and Future Directions. Journal of Propulsion and Power 20 (2): 302–311

    Article  Google Scholar 

  • Lee J W, Kuo Y C (2005) Cyclic Oxidation Behavior of a Cobalt Aluminide Coating on Co-base Superalloy AMS 5608. Surface and Coatings Technology 200 (5–6): 1225–1230

    Article  CAS  Google Scholar 

  • Lelait L et al (1993) Microstructural Investigations of EBPVD Thermal Barrier Coatings. Journal De Physique IV 3: 645–654

    CAS  Google Scholar 

  • Lesnikova E G, Lesnikov V P (1986) Influence of the β-Phase of the Aluminide Coating on the Condition and Scale Resitance of the Surface Layer of NBi-Al alloys. Metal Science and Heat Treatment 28 (5): 372–376

    Article  Google Scholar 

  • Levi C G et al (2012) Environmental Degradation of Thermal Barrier Coatings by molten Deposits. MRS Bulletin 37: 932–941

    Article  CAS  Google Scholar 

  • Lughi V, Clarke D R (2005) High Temperature Aging of YSZ Coatings and subsequent Transformation at low Temperature. Surface and Coatings Technology 200 (5–6): 1287–1291

    Article  CAS  Google Scholar 

  • Luthra K L, Leblanc O H (1987) Low Temperature Hot Corrosion of CoCrAl Alloys. Materials Science and Engineering 87: 329–335

    Article  CAS  Google Scholar 

  • Markou C et al (2011) IATA Maintenance Cost Executive Commentary. Available via DIALOG. https://www.iata.org/whatwedo/workgroups/Documents/MCTF/AMC-Exec-Comment-FY14.pdf. Accessed 12 November 2017

  • Meelu M C et al (1992) Sermaloy J (Silicon modified Aluminide) Coating mechanical Improvements. Processing, Properties and Applications of Metallic and Ceramic Materials 2: 1247–1253

    CAS  Google Scholar 

  • Meier S M et al (1990) Status of Ceramic Thermal Barrier Coatings – Gas Turbine Applications and Life Prediction Methods. In: Proceedings of Coatings for Advanced Heat Engines Workshop, US Department of Energy, 6–9 August 1990

    Google Scholar 

  • Mercer C et al (2005) A Delamination Mechanism for Thermal Barrier Coatings subject to Calcium-Magnesium-Alumino-Silicate (CMAS) Infiltration. Acta Materialia 53 (4): 1029–1039

    Article  CAS  Google Scholar 

  • Mercer C et al (2007) On a ferroelastic Mechanism governing the Toughness of Metastable tetragonal-prime (t’) Yttria-stabilized Zirconia. Proceedings of the Royal Society A: Mathematica, Physical and Engineering Sciences 463 (2081): 1393–1408

    Article  CAS  Google Scholar 

  • Mévrel R (1989) State of Art on High Temperature Corrosion resistant Coatings. Materials Science and Engineering A 120–121 Part 1: 13–24

    Google Scholar 

  • Mévrel R et al (1986) Pack Cementation Process. Materials Science and Technology 2: 201–206

    Article  Google Scholar 

  • Miller R A et al. Phase Stability in Plasma-sprayed partially stabilised Zirconia-Yttria. In: Heuer A H, Hobbs L W, editors. Advances in Ceramics Volume 3 – Science and Technology of Zirconia. The American Ceramic Society, Columbus, Ohio; 1981. p. 241–253

    Google Scholar 

  • Muboyadzhyan S A (2009) Erosion Resistant Coatings for Gas Turbine Compressor Blades. Russian Metallurgy 2009 (3): 183–186

    Article  Google Scholar 

  • Mumm D R et al (2001) Characterization of a Cyclic Displacement Instability for a thermally grown Oxide in a Thermal Barrier System. Acta Materialia 49 (12): 2329–2340

    Article  CAS  Google Scholar 

  • Naji A et al (2015) Improvements in the Thermodynamic and Kinetic Considerations on the Coating Design for Diffusion Coatings formed via Pack Cementation. Materials and Corrosion 66 (9): 863–868

    Article  CAS  Google Scholar 

  • Nicholls et al (1999) A Comparison between the Erosion Behavior of Thermal Spray and Electron-beam Physical Vapour Deposition Thermal Barrier Coatings. Wear 233: 352–361

    Article  Google Scholar 

  • Nicholls J R (2000) Designing Oxidation-resistant Coatings. JOM 52 (1): 28–35

    Article  CAS  Google Scholar 

  • Nicholls J R (2003) Advances in Coating Design for High-Performance Gas Turbines. MRS Bulletin 28 (9): 659–670

    Article  CAS  Google Scholar 

  • Nicholls J R et al (2002) Smart Overlay Coatings – Concept and Practice. Surface and Coatings Technology 149: 236–244

    Article  CAS  Google Scholar 

  • Nicoll A R et al (1986) Future Developments in Plasma Spray Coating. Materials Science and Technology 2 (3): 214–219

    Article  CAS  Google Scholar 

  • Oerlikon Metco (2014) Solutions Flash: Improve Efficiency and Reduce Emissions with High Pressure Turbine Abradable Coatings for Industrial Gas Turbines. Available via DIALOG. https://www.oerlikon.com/ecomaXL/files/metco/oerlikon_SF-0015.1_IGT_HPT_Abradables_EN.pdf&download=1. Accessed 12 November 2017

  • Oerlikon Metco (2016) Material Product Data Sheet – Copper Nickel and Copper Nickel Indium Thermal Spray Powders. Available via DIALOG. https://www.oerlikon.com/ecomaXL/files/metco/oerlikon_DSMTS-0061.5_CuNi_CuNiIn_Powders.pdf&download=1. Accessed 12 November 2017

  • Padture N P et al (2002) Thermal Barrier Coatings or Gas-Turbine Engine Applications. Science 296: 280–284

    Article  CAS  Google Scholar 

  • Pan W et al (2012) Low Thermal Conductivity Oxides. MRS Bulletin 37: 917–922

    Article  CAS  Google Scholar 

  • Park Y W et al (2006) Effect of Fretting Amplitude and Frequency on the Fretting Corrosion Behavior of Tin plated Contacts. Surface and Coatings Technology 201: 2181–2192

    Article  CAS  Google Scholar 

  • Parzukowski R S (1977) Gas-Phase Deposition of Aluminum on Nickel Alloys. Thin Solid Films 45: 349–355

    Article  Google Scholar 

  • Pérez F J et al (1999a) Aluminizing and chromizing Bed Treatment by CVD in a fluidized Bed Reactor on Austenitic Stainless Steels. Surface and Coatings Technology 120–121: 151–157

    Article  Google Scholar 

  • Pérez F J et al (1999b) Kinetic Studies of Cr and Al Deposition using CVD-FBR on different metallic Substrates. Surface and Coatings Technology 122: 281–289

    Article  Google Scholar 

  • Pint B A (1997) Study of the Reactive Element Effect in ODS Iron-Base Alumina Formers. Materials Science Forum 251–254: 397–404

    Article  Google Scholar 

  • Pint B A (2004) The Role of Chemical Composition on the Oxidation Performance of Aluminide Coatings. Surface and Coatings Technology 188–189: 71–78

    Article  CAS  Google Scholar 

  • Pint B A et al (1998) Substrate and Bond Coat Compositions: Factors affecting Alumina Scale Adhesion. Materials Science and Engineering A 245 (2): 201–211

    Article  Google Scholar 

  • Pint B A et al (2001) Evaluation of Iron-Aluminide CVD Coatings for High Temperature Corrosion Protection. Materials at High Temperatures 18 (3): 185–192

    Article  CAS  Google Scholar 

  • Pint B A et al (2006) Oxidation Resistance: One Barrier to moving beyond Ni-base Superalloys. Materials Science and Engineering A 415 (1–2):255–263

    Article  CAS  Google Scholar 

  • Pint B A et al (2011) Effect of increased Water Vapor Levels on TBC Lifetime with Pt-containing bond Coatings. Surface and Coatings Technology 206: 1566–1570

    Article  CAS  Google Scholar 

  • Pint B A, Zhang Y (2011) Performance of Al-rich Oxidation-resistant Coatings for Fe-base Alloys. Materials and Corrosion 62 (6): 549–560

    Article  CAS  Google Scholar 

  • Poerschke D L et al (2016) Equilibrium Relationships between Thermal Barrier Oxides and Silicate Melts. Acta Materialia 120: 302–314

    Article  CAS  Google Scholar 

  • Pokluda J, Kianicová M (2010) Damage and Performance Assessment of Protective Coatings on Turbine Blades. Available via DIALOG. https://www.intechopen.com/download/pdf/12092. Accessed 28 October 2017

  • Prater J T et al (1981) Proceedings of the second Conference on Advanced Materials for alternate Fuels capable Heat Engines. Palo Alto, CA 1981

    Google Scholar 

  • Praxair Surface Technologies (2000) Praxair and TAFA Arc Spray Copper-Nickel-Indium Wire-58T. Available via DIALOG. http://tatiscia.com/wp-content/pdf/tafa/1.9.1.2-58T%20-%20Copper%20Nickel%20Indium%20Wire.pdf. Accessed 13 November 2017

  • Priest M S, Zhang Y (2015) Synthesis of Clean Aluminide Coatings on Ni-based Superalloys via modified Pack Cementation Process. Materials and Corrosion 66 (10): 1111–1119

    Article  CAS  Google Scholar 

  • Qu Z et al (2011) Thermal Conductivity of the Gadolinium Calcium Silicate Apatites: Effect of Different Point Defect Types. Acta Materialia 59 (10): 3941–3850

    Article  CAS  Google Scholar 

  • Raghavan S et al (2001) Thermal Properties of Zirconia co-doped with trivalent and pentavalent Oxides. Acta Materialia 49 (1): 169–179

    Article  CAS  Google Scholar 

  • Raghavan S et al (2004) Ta2O5/Nb2O5 and Y2O3 Co-doped Zirconias for Thermal Barrier Coatings. Journal of the American Ceramic Society 87 (3): 431–437

    Article  CAS  Google Scholar 

  • Rajendran R (2012) Gas Turbine Coatings – An Overview. Engineering Failure Analysis 26: 355–369

    Article  CAS  Google Scholar 

  • Reed R C (2006) The Superalloys – Fundamentals and Applications. Cambridge University Press, Cambridge (UK)

    Book  Google Scholar 

  • Ren W et al (2014) Oxidation and Microstructure Evolution of Cobalt Aluminide Coatings on directionally-solidified Superalloys during long term Exposure at 1000 °C. Materials Research Innovations 18 (S4):945–951

    Google Scholar 

  • Restall J E, Wood M I (1986) Alternative Processes and Treatments. Materials Science and Technology 2: 225–231

    Article  CAS  Google Scholar 

  • Rigney D V et al (1997) PVD Thermal Barrier Coating Applications and Process Development for Aircraft Engines. Journal of Thermal Spray Technology 6 (2): 167–175

    Article  CAS  Google Scholar 

  • Rolls-Royce (1996) The Jet Engine 5th edition. Rolls-Royce plc, Derby

    Google Scholar 

  • Ruud J A et al (2001) Strength Degradation and Failure Mechanisms of Electron-beam Physical-vapor-deposited Thermal Barrier Coatings. Journal of the American Ceramic Society 84 (7): 1545–1552

    Article  CAS  Google Scholar 

  • Sato T et al (1985) Transformation of Yttria partially stabilized Zirconia by low Temperature Annealing in Air. Journal of Materials Science 20 (4): 1466–1470

    Article  CAS  Google Scholar 

  • Scharrer and Pelletti (1995) Leakage and Rotordynamic Effects of Compressor annular Seals. In: Proceedings of 24th Turbomachinery Symposium, Huston, Texas, 26–28 September 1995, p 175

    Google Scholar 

  • Schmid R (1997) New High Temperature Abradable Coatings for Gas Turbines. PhD Thesis, Swiss Federal Institute of Technology

    Google Scholar 

  • Scott H G (1975) Phase Relationship in the Zirconia-Yttria System. Journal of Materials Science 10 (9): 1527–1535

    Article  CAS  Google Scholar 

  • Seelig R P, Steuber R J (1978) High-Temperture-resistant Coatings for Superalloys. High Temperatures – High Pressures 10 (2): 207–213

    Google Scholar 

  • Shankar S, Seigle L L (1978) Interdiffusion and intrinsic Diffusion in the NiAl (δ) Phase of the Al-Ni System. Metallurgical Transactions A 9 (10): 1467–1476

    Article  Google Scholar 

  • Shen et al (2008) Anisotropic thermal Conductivity of the Aurivillus Phase, Bismuth Titanate (Bi4Ti3O12): A natural nanostructured Superlattice. Applied Physics Letters 93 (10) 102907

    Article  CAS  Google Scholar 

  • Shen Y et al (2010) Low thermal Conductivity without Oxygen Vacancies in equimolar YO1.5+TaO2.5- and YbO1.5+TaO2.5- stabilized Zirconia Ceramics. Acta Materialia 58 (13): 4424–4431

    Article  CAS  Google Scholar 

  • Smialek J L (1971) Marteniste in NiAl Oxidation Resistant Coatings. Metallurgical Transactions 2 (3): 913–915

    Article  CAS  Google Scholar 

  • Smith A B et al (1999) Vapour Aluminide Coating of Internal Cooling Channels in Turbine Blades and Vanes. Surface Coatings Technology 120–121: 112–117

    Article  Google Scholar 

  • Smith J S, Boone D H (1990) Platinum Modified Aluminides-Present Status. In: Gas Turbine and Aeroengine Congress and Exposition, Brussels, Belgium, 1980

    Google Scholar 

  • Song X W et al (2011) Influence of the partial Substitution of Y2O3 with Ln2O3 (Ln=Nd, Sm, Gd) on the Phase Structure and thermophysical Properties of ZrO2-Nb2O3-Y2O3 Ceramics. Acta Materialia 59 (10): 3895–3902

    Article  CAS  Google Scholar 

  • Sparks T D et al (2010) Anisotropic Thermal Diffusivity and Conductivity of La-doped Strontium Niobate Sr2Nb2O7. Journal of the American Ceramic Society 93 (4): 1136–1141

    Article  CAS  Google Scholar 

  • Sporer D R et al (2011) US Patent 7981530 B2

    Google Scholar 

  • Squillace A et al (1999) The Control of the Composition and Structure of Aluminide Layers formed by Vapour Aluminising. Surface and Coatings Technology 120–121: 118–123

    Article  Google Scholar 

  • Stecura S (1986) Advanced Thermal Barrier System bond Coatings for Use on Nickel-, Cobalt- and Iron-base Alloy Substrate. Thin Solid Films 136 (2): 241–256

    Article  CAS  Google Scholar 

  • Strangman T E (1987) Development and Performance of Physical Vapor Deposition Thermal Barrier Coating Systems. In: Proceedings of Coatings for Advanced Heat Engines Workshop, US Department of Energy, 27–30 July 1987

    Google Scholar 

  • Strangman T E (1996) US Patent 5,514,482

    Google Scholar 

  • Talboom F P, Grafwallner J (1970) US Patent 3,542,5330

    Google Scholar 

  • Tawancy H M et al (1991) Role of Platinum in Aluminide Coatings. Surface and Coatings Technology 49 (1-3):1–7

    Article  CAS  Google Scholar 

  • Thorpe M L, Richter J (1992) A pragmatic Analysis and Comparison of HVOF Processes. Journal of Thermal Spray Technology 1 (2): 161–170

    Article  CAS  Google Scholar 

  • Tolpygo V K et al (2008) Effect of Hf, Y and C in the underlying Superalloy on the Rumpling of diffusion Aluminide Coatings. Acta Materialia 56 (3): 489–499

    Article  CAS  Google Scholar 

  • Tolpygo V K, Clarke D R (2004a) On the Rumpling Mechanism in Nickel-Aluminide Coatings: Part I: An experimental Assesment. Acta Materialia 52 (17): 5115–5127

    CAS  Google Scholar 

  • Tolpygo V K, Clarke D R (2004b) On the Rumpling Mechanism in Nickel-Aluminide Coatings: Part II: Characterization of Surface Undulations and bond Coat Swelling. Acta Materialia 52 (17): 5129–5141

    Google Scholar 

  • Tu J et al (1994) The Size Effect of the martensitic Transformation in ZrO2-containing Ceramics. Journal of Materials Science 29 (6): 1662–1665

    Article  CAS  Google Scholar 

  • Tyron B et al (2006) Multilayered Ruthenium-modified bond Coats for Thermal Barrier Coatings. Metallurgical and Materials Transactions A 37 (11): 3347–3358

    Article  Google Scholar 

  • Tyron B et al (2007) Hybrid Intermetallic Ru/Pt modified bond Coatings for Thermal Barrier Systems. Surface and Coatings Technology 2020 (2): 349–361

    Article  CAS  Google Scholar 

  • Unocic K A, Pint B A (2013) Effect of Water Vapor on thermally grown Alumina Scales on bond Coating. Surface and Coatings Technology 215: 30–38

    Article  CAS  Google Scholar 

  • Van Ness D et al (2006) Turbine Tip Clearance Flow Control Using Plasma Actuators. Paper presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9–12 January 2006

    Google Scholar 

  • Van Roode M, Hsu L (1989) Evaluation of the Hot Corrosion Protection of Coatings for Turbine hot Section Components. Surface and Coatings Technology 37 (4): 461–481

    Article  Google Scholar 

  • Vassen R et al (2000) Zirconates as New Materials for Thermal Barrier Coatings. Journal of the American Ceramic Society 83 (8): 2023–2028

    Article  CAS  Google Scholar 

  • Vassen R et al (2010) Overview on advanced thermal Barrier Coatings. Surface and Coatings Technology 205 (4): 938–942

    Article  CAS  Google Scholar 

  • Vassen R, Stöver D (2007) Influence of Microstructure on the Thermal Cycling Performance of Thermal Barrier Coatings. In: Marple B R et al (ed) Thermal Spray 2007: Global Coating Solutions: Proceedings of the 2007 International Thermal Spray Conference. ASM International, Materials Park, Ohio, 2007

    Google Scholar 

  • Wang et al (2011) Diffusion Barrier behaviors of (Ru, Ni)Al/NiAl Coatings on Ni-based Superalloy Substrate. Intermetallics 19 (2): 191–195

    Article  CAS  Google Scholar 

  • Warnes B M, Punola D C (1997) Clean Diffusion Coatings by Chemical Vapor Deposition. Surface and Coatings Technology 94–95: 1–6

    Article  Google Scholar 

  • Wilden J et al (2006) Plasma transferred Arc Welding – Modeling and experimental Optimization. Journal of Spray Technology 15 (4): 779–784

    Article  CAS  Google Scholar 

  • Wilson S (2012) Thermally sprayed abradable Coating Technology for Sealing in Gas Turbines. Oerlikon Metco White Paper – Thermally Sprayed Abradable Coatins 10: 1–9

    Google Scholar 

  • Winter M R, Clarke D R (2007) Oxide Materials with Low Thermal Conductivity. Journal of the American Ceramic Society 90 (2): 533–540

    Article  CAS  Google Scholar 

  • Wolfe D E et al (2005) Tailored Microstructure of EB-PVD 8YSZ Thermal Barrier Coatings with low thermal Conductivity and high thermal Reflectivity for Turbine Applications. Surface and Coatings Technology 190: 132–149

    Article  CAS  Google Scholar 

  • Wright I G, Gibbons T B (2007) Recent Developments in Gas Turbine Materials and Technology and their Implications for Syngas Firing. International Journal of Hydrogen Energy 32 (16): 3610–3621

    Article  CAS  Google Scholar 

  • Wu L T et al (2017) A prominent Driving Force for the Spallation of Thermal Barrier Coatings: Chemistry dependent Phase Transformation of the bond Coat. Acta Materialia 137: 22–35

    Article  CAS  Google Scholar 

  • Wuench B J, Eberman K W (2000) Order-Disorder Phenomena in A2B2O7 Pyrochlore Oxides. JOM 52 (7): 19–21

    Article  Google Scholar 

  • Xu T et al (2004) Observations and Analyses of Failure Mechanisms in Thermal Barrier Systems with two Phase bond Coats based on NiCoCrAlY. Acta Materialia 52 (6): 1439–1450

    Article  CAS  Google Scholar 

  • Yang S et al (2008) Anisotropic Thermal Conductivity of the Aurivillus Phase, Bismuth Titanate (Bi4Ti3O12): A Natural Nanostructured Superlattice. Applied Physics Letters 93 (10): 102907–102907-3

    Article  CAS  Google Scholar 

  • Zhang Y et al (2003) Martensitic Transformation in CVD NiAl and (Ni, Pt)Al bond Coatings. Surface and Coatings Technology 163–164: 19–24

    Article  Google Scholar 

  • Zhang Y et al (2004) Effect of Cycle Length on the Oxidation Performance of Iron Aluminide Coatings. Surface and Coatings Technology 188–189: 35–40

    Article  CAS  Google Scholar 

  • Zhang Y et al (2007) Interdiffusional Degradation of Oxidation-resistant Aluminide Coatings on Fe-base alloys. Materials and Corrosion 58 (10): 751–761

    Article  CAS  Google Scholar 

  • Zhao M et al (2012) Properties of Yttria-Stabilized-Zirconia Based Ceramic Composite Abradable Coatings. Key Engineering Materials 512–515: 1551–1554

    Article  CAS  Google Scholar 

  • Zhou Z R (1999) Lubrication in Fretting – A Review. Wear 225–229: 962–967

    Article  Google Scholar 

  • Zhu D M, Miller R A (2004) Development of Advanced Low Conductivity Thermal Barrier Coatings. International Journal of Applied Ceramic Technology 1 (1): 86–94

    Article  CAS  Google Scholar 

Further Reading

  • Davis J R (2004) Handbook of Thermal Spray Technology. ASM International

    Google Scholar 

  • Dorfman M R et al (2013), Thermal Spray Technology Growth in Gas Turbine Applications. In: Tucker R C (ed) Thermal Spray Technology vol. 5A, ASM International, pp 280–286

    Google Scholar 

  • Xu H and Guo H (2011) Thermal Barrier Coatings. Woodhead publishing

    Google Scholar 

  • Kanna A S (2016) High Temperature Corrosion. World Scientific

    Google Scholar 

  • Tamarin Y (2002) Protective Coatings for Turbine Blades. ASM International

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gialanella, S., Malandruccolo, A. (2020). Coatings. In: Aerospace Alloys . Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-24440-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24440-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24439-2

  • Online ISBN: 978-3-030-24440-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics