Skip to main content

Genetic Determinants of Persistence in Escherichia coli

  • Chapter
  • First Online:
Persister Cells and Infectious Disease

Abstract

Persisters comprise a small fraction of cells within a bacterial population that transiently are tolerant to lethal doses of antibiotics. Following their discovery, persister cells went unheeded for nearly 40 years until Moyed and Bertrand revived the field of persister research in 1983. Ever since, an increasing body of literature has reported on genetic determinants of persistence. We here present a comprehensive overview of all currently known genes affecting persistence in Escherichia coli. We systematically group persister genes according to the biological processes they are involved in, more specifically a variety of stress responses and energy metabolism. We also briefly touch upon the role of toxin-antitoxin systems in persistence. In general, persister levels are positively correlated with expression levels of genes that yield protection against nutrient stress (e.g., dksA, relA), DNA damage (e.g., recA, lexA, umuDC), heat shock (e.g., dnaJ, dnaK), or oxidative stress (e.g., soxS, oxyR). This underlines the importance of these stress responses in the formation of persister cells. However, both elevated and decreased persister levels are found upon impeding the general stress response and energy metabolism, emphasizing the need for further research. Combined with additional persister genes that undoubtedly await discovery, the information presented in this work will support the development of new persister models that will in turn greatly contribute to our understanding of this intriguing phenomenon.

Dorien Wilmaerts and Pauline Herpels are the co-first authors.

Jan Michiels and Natalie Verstraeten are the co-last authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizenman, E., Engelberg-Kulka, H., & Glaser, G. (1996). An Escherichia coli chromosomal “addiction module” regulated by guanosine [corrected] 3′,5′-bispyrophosphate: A model for programmed bacterial cell death. Proceedings of the National Academy of Sciences, 93, 6059–6063.

    Article  CAS  Google Scholar 

  • Allison, K. R., Brynildsen, M. P., & Collins, J. J. (2011). Heterogeneous bacterial persisters and engineering approaches to eliminate them. Current Opinion in Microbiology, 14, 593–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amato, S. M., & Brynildsen, M. P. (2015). Persister heterogeneity arising from a single metabolic stress. Current Biology, 25, 2090–2098.

    Article  CAS  PubMed  Google Scholar 

  • Amato, S. M., Orman, M. A., & Brynildsen, M. P. (2013). Metabolic control of persister formation in Escherichia coli. Molecular Cell, 50, 475–487.

    Article  CAS  PubMed  Google Scholar 

  • An, G., Justesen, J., Watson, R. J., & Friesen, J. D. (1979). Cloning the spoT gene of Escherichia coli: Identification of the spoT gene product. Journal of Bacteriology, 137, 1100–1110.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anders, S., McCarthy, D. J., Chen, Y. S., Okoniewski, M., Smyth, G. K., Huber, W., & Robinson, M. D. (2013). Count-based differential expression analysis of RNA sequencing data using R and bioconductor. Nature Protocols, 8, 1765–1786.

    Article  PubMed  CAS  Google Scholar 

  • Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.

    Article  CAS  PubMed  Google Scholar 

  • Battesti, A., & Bouveret, E. (2006). Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Molecular Microbiology, 62, 1048–1063.

    Article  CAS  PubMed  Google Scholar 

  • Battesti, A., Majdalani, N., & Gottesman, S. (2011). The RpoS-mediated general stress response in Escherichia coli. Annual Review of Microbiology, 65, 189–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behmardi, P., Grewal, E., Kim, Y., & Yang, H. N. (2009). RpoS-dependant mechanism is required for cross protection conferred to hyperosmolarity by heat shock. Journal of Experimental Microbiology and Immunology, 13, 18–21.

    Google Scholar 

  • Bernier, S. P., Lebeaux, D., Defrancesco, A. S., Valomon, A., Ghigo, J., & Beloin, C. (2013). Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genetics, 9, e1003144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokinsky, G., Baidoo, E. E. K., Akella, S., Burd, H., Weaver, D., Alonso-Gutierrez, J., García-Martín, H., Lee, T. S., & Keasling, J. D. (2013). HipA-triggered growth arrest and β-lactam tolerance in Escherichia coli are mediated by RelA-dependent ppGpp synthesis. Journal of Bacteriology, 195, 3173–3182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borisov, V. B., Gennis, R. B., Hemp, J., & Verkhovsky, M. I. (2011). The cytochrome bd respiratory oxygen reductases. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1807, 1398–1413.

    Article  CAS  Google Scholar 

  • Boutte, C. C., & Crosson, S. (2013). Bacterial lifestyle shapes stringent response activation. Trends in Microbiology, 21, 174–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brent, R., & Ptashne, M. (1980). The lexA gene product represses its own promoter. Proceedings of the National Academy of Sciences of the United States of America, 77, 1932–1938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brielle, R., Pinel-Marie, M. L., & Felden, B. (2016). Linking bacterial type I toxins with their actions. Current Opinion in Microbiology, 30, 144–121.

    Article  CAS  Google Scholar 

  • Brown, L., Gentry, D., Elliott, T., & Cashel, M. (2002). DksA affects ppGpp induction of RpoS at a translational level. Journal of Bacteriology, 184, 4455–4465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, Z. (2016). The function of the DegP (HtrA) protein: Protease versus chaperone. IUBMB Life, 68, 904–907.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, N., Kwan, B. W., & Wood, T. K. (2016). Persistence increases in the absence of the alarmone guanosine tetraphosphate by reducing cell growth. Scientific Reports, 6, 20519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen, S. K., Mikkelsen, M., Pedersen, K., & Gerdes, K. (2001). RelE, a global inhibitor of translation, is activated during nutritional stress. Proceedings of the National Academy of Sciences, 98, 14328–14333.

    Article  CAS  Google Scholar 

  • Christensen, S. K., Maenhaut-Michel, G., Mine, N., Gottesman, S., Gerdes, K., & Van Melderen, L. (2004). Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: Involvement of the yefM-yoeB toxin-antitoxin system. Molecular Microbiology, 51, 1705–1717.

    Article  CAS  PubMed  Google Scholar 

  • Christensen-Dalsgaard, M., Jørgensen, M. G., & Gerdes, K. (2010). Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Molecular Microbiology, 75, 333–348.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, G. N. (2014). Microbial biochemistry. New York: Springer International.

    Google Scholar 

  • Courcelle, J., & Hanawalt, P. C. (2003). RecA-dependent recovery of arrested DNA replication forks. Annual Review of Genetics, 37, 611–646.

    Article  CAS  PubMed  Google Scholar 

  • Cox, G. B., Newton, N. A., Gibson, F., Snoswell, A., & Hamilton, J. A. (1970). The function of ubiquinone in Escherichia coli. The Biochemical Journal, 117, 551–562.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Debbia, E. A., Roveta, S., Schito, A. M., Gualco, L., & Marchese, A. (2001). Antibiotic persistence: The role of spontaneous DNA repair response. Microbial Drug Resistance, 7, 335–342.

    Article  CAS  PubMed  Google Scholar 

  • Dong, T., & Schellhorn, H. E. (2009). Control of RpoS in global gene expression of Escherichia coli in minimal media. Molecular Genetics and Genomics, 281, 19–33.

    Article  CAS  PubMed  Google Scholar 

  • Dörr, T., Lewis, K., & Vulić, M. (2009). SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genetics, 5, e1000760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dörr, T., Vulić, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8, e1000317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • English, B. P., Hauryliuk, V., Sanamrad, A., Tankov, S., Dekker, N. H., & Elf, J. (2011). Single-molecule investigations of the stringent response machinery in living bacterial cells. Proceedings of the National Academy of Sciences, 108, 365–373.

    Article  Google Scholar 

  • Fung, D. K. C., Chan, E. W. C., Chin, M. L., & Chan, R. C. Y. (2010). Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development. Antimicrobial Agents and Chemotherapy, 54, 1082–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbe, T. R., Kobayashi, M., & Yukawa, H. (2000). Indole-inducible proteins in bacteria suggest membrane and oxidant toxicity. Archives of Microbiology, 173, 78–82.

    Article  CAS  PubMed  Google Scholar 

  • Gentry, D. R., Hernandez, V. J., Nguyen, L. H., Jensen, D. B., & Cashel, M. (1993). Synthesis of the stationary-phase sigma factor σs is positively regulated by ppGpp. Journal of Bacteriology, 175, 7892–7989.

    Article  Google Scholar 

  • Gerdes, K., Rasmussen, P. B., & Molin, S. (1986). Unique type of plasmid maintenance function: Postsegregational killing of plasmid-free cells. Proceedings of the National Academy of Sciences of the United States of America, 83, 3116–3120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Germain, E., Castro-Roa, D., Zenkin, N., & Gerdes, K. (2013). Molecular mechanism of bacterial persistence by HipA. Molecular Cell, 52, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Germain, E., Roghanian, M., Gerdes, K., & Maisonneuve, E. (2015). Stochastic induction of persister cells by HipA through (p)ppGpp-mediated activation of mRNA endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 112, 5171–5176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giese, K. C., Michalowski, C. B., & Little, J. W. (2008). RecA-dependent cleavage of LexA dimers. Journal of Molecular Biology, 377, 148–161.

    Article  CAS  PubMed  Google Scholar 

  • Girard, M. E., Gopalkrishnan, S., Grace, E. D., Halliday, J. A., Gourse, R. L., & Herman, C. (2018). DksA and ppGpp regulate the σS stress response by activating promoters for the small RNA DsrA and the anti-adapter protein IraP. Journal of Bacteriology, 200, e00463–e00417.

    CAS  PubMed  Google Scholar 

  • Girgis, H. S., Harris, K., & Tavazoie, S. (2012). Large mutational target size for rapid emergence of bacterial persistence. Proceedings of the National Academy of Sciences, 109, 12740–12745.

    Article  CAS  Google Scholar 

  • Giudice, E., Mac, K., & Gillet, R. (2014). Trans-translation exposed: Understanding the structures and functions of tmRNA-SmpB. Frontiers in Microbiology, 5, 1–11.

    Article  Google Scholar 

  • Goldfless, S. J., Morag, A. S., Belisle, K. A., Sutera, V. A., & Lovett, S. T. (2006). DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. Molecular Cell, 21, 595–604.

    Article  CAS  PubMed  Google Scholar 

  • Goltermann, L., Good, L., & Bentin, T. (2013). Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in Escherichia coli. The Journal of Biological Chemistry, 288, 10483–10489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gragerov, A. I., Martin, E. S., Krupenko, M. A., Kashlev, M. V., & Nikiforov, V. G. (1991). Protein aggregation and inclusion body formation in Escherichia coli rpoH mutant defective in heat shock protein induction. FEBS Letters, 291, 222–224.

    Article  CAS  PubMed  Google Scholar 

  • Grudniak, A. M., Kuć, M., & Wolska, K. I. (2005). Role of Escherichia coli DnaK and DnaJ chaperones in spontaneous and induced mutagenesis and their effect on UmuC stability. FEMS Microbiology Letters, 242, 361–366.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, A., Venkataraman, B., Vasudevan, M., & Gopinath, B. K. (2017). Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress. Scientific Reports, 7, 5868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gur, E. (2013). The Lon AAA+ protease. Sub-Cellular Biochemistry, 66, 35–51.

    Article  CAS  PubMed  Google Scholar 

  • Gurnev, P. A., Ortenberg, R., Dörr, T., Lewis, K., & Bezrukov, S. M. (2012). Persister-promoting bacterial toxin TisB produces anion-selective pores in planar lipid bilayers. FEBS Letters, 586, 2529–2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen, S., Lewis, K., & Vulić, M. (2008). Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrobial Agents and Chemotherapy, 52, 2718–2726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms, A., Fino, C., Sørensen, M. A., Semsey, S., & Gerdes, K. (2017). Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. mBio, 8, e01964-17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harms, A., Brodersen, D. E., Mitarai, N., & Gerdes, K. (2018). Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Molecular Cell, 70, 768–784.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, J. J., Wade, W. D., Akierman, S., Vacchi-Suzzi, C., Stremick, C. A., Turner, R. J., & Ceri, H. (2009). The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrobial Agents and Chemotherapy, 53, 2253–2258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harshman, R. B., & Yamazaki, H. (1971). Formation of ppGpp in a relaxed and stringent strain of Escherichia coli during diauxie lag. Biochemistry, 10, 3980–3982.

    Article  CAS  PubMed  Google Scholar 

  • Harshman, R. B., & Yamazakif, H. (1972). MSI accumulation induced by sodium chloride. Biochemistry, 11, 615–618.

    Article  CAS  PubMed  Google Scholar 

  • Haseltine, W. A., & Block, R. (1973). Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proceedings of the National Academy of Sciences, 70, 1564–1568.

    Article  CAS  Google Scholar 

  • Helaine, S., Cheverton, A. M., Watson, K. G., Faure, L. M., Matthews, S. A., & Holden, D. W. (2014). Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science, 343, 204–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hengge-Aronis, R. (2002). Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiology and Molecular Biology Reviews, 66, 373–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa, H., Inazumi, Y., Masaki, T., Hirata, T., & Yamaguchi, A. (2005). Indole induces the expression of multidrug exporter genes in Escherichia coli. Molecular Microbiology, 55, 1113–1126.

    Article  CAS  PubMed  Google Scholar 

  • Hong, S. H., Wang, X., O’Connor, H. F., Benedik, M. J., & Wood, T. K. (2012). Bacterial persistence increases as environmental fitness decreases. Microbial Biotechnology, 5, 509–522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu, Y., Kwan, B. W., Osbourne, D. O., Benedik, M. J., & Wood, T. K. (2015). Toxin YafQ increases persister cell formation by reducing indole signalling. Environmental Microbiology, 17, 1275–1285.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, D. E., Auger, E. A., & Matin, A. (1991). Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival. Journal of Bacteriology, 173, 1992–1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamenšek, S., Podlesek, Z., Gillor, O., & Žgur-Bertok, D. (2010). Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogenous expression. BMC Microbiology, 10, 283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasari, V., Mets, T., Tenson, T., & Kaldalu, N. (2013). Transcriptional cross-activation between toxin-antitoxin systems of Escherichia coli. BMC Microbiology, 13, 45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaspy, I., Rotem, E., Weiss, N., Ronin, I., Balaban, N. Q., & Glaser, G. (2013). HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nature Communications, 4, 3001.

    Article  PubMed  CAS  Google Scholar 

  • Keren, I., Shah, D., Spoering, A., Kaldalu, N., & Lewis, K. (2004a). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. Journal of Bacteriology, 186, 8172–8180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keren, I., Kaldalu, N., Spoering, A., Wang, Y., & Lewis, K. (2004b). Persister cells and tolerance to antimicrobials. FEMS Microbiology Letters, 230, 13–18.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y., & Wood, T. K. (2010). Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochemical and Biophysical Research Communications, 391, 209–213.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Cho, D., Heo, P., Jung, S., Park, M., Oh, E., Sung, J., & Kim, P. (2016). Fumarate-mediated persistence of Escherichia coli against antibiotics. Antimicrobial Agents and Chemotherapy, 60, 2232–2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss, P. (2000). Results concerning products and sums of the terms of linear recurrences. Annales Mathematicae et Informaticae, 27, 1–7.

    Google Scholar 

  • Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A., & Collins, J. J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 130, 797–810.

    Article  CAS  PubMed  Google Scholar 

  • Korch, S. B., & Hill, T. M. (2006). Ectopic overexpression of wild-type and mutant hipA genes in Escherichia coli: Effects on macromolecular synthesis and persister formation. Journal of Bacteriology, 188, 3826–3836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korch, S. B., Henderson, T. A., & Hill, T. M. (2003). Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Molecular Microbiology, 50, 1199–1213.

    Article  CAS  PubMed  Google Scholar 

  • Kostakioti, M., Hadjifrangiskou, M., Pinkner, J. S., & Hultgren, S. J. (2010). QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Molecular Microbiology, 73, 1020–1031.

    Article  CAS  Google Scholar 

  • Kreuzer, K. N. (2013). DNA damage responses in prokaryotes: Regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harbor Perspectives in Biology, 5, a012674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuczyńska-Wiśnik, D., Kȩdzierska, S., Matuszewska, E., Lund, P., Taylor, A., Lipińska, B., & Laskowska, E. (2002). The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. Microbiology, 148, 1757–1765.

    Article  PubMed  Google Scholar 

  • Lacour, S., & Landini, P. (2004). σS-dependent gene expression at the onset of stationary phase in Escherichia coli: Function of σS-dependent genes and identification of their promoter sequences. Society, 186, 7186–7195.

    CAS  Google Scholar 

  • Landini, P., Egli, T., Wolf, J., & Lacour, S. (2014). sigmaS, a major player in the response to environmental stresses in Escherichia coli: Role, regulation and mechanisms of promoter recognition. Environmental Microbiology Reports, 6, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Langklotz, S., & Narberhaus, F. (2011). The Escherichia coli replication inhibitor CspD is subject to growth-regulated degradation by the Lon protease. Molecular Microbiology, 80, 1313–1325.

    Article  CAS  PubMed  Google Scholar 

  • Leatham-Jensen, M. P., Mokszycki, M. E., Rowley, D. C., Robert, D., Camberg, J. L., Sokurenko, E. V., Tchesnokova, V. L., Frimodt-Møller, J., Krogfelte, K. A., Nielsen, K. L., Frimodt-Møller, N., Sun, G., & Cohen, P. S. (2016). Uropathogenic Escherichia coli metabolite-dependent quiescence and persistence may explain antibiotic tolerance during urinary tract infection. MSphere, 1, e00055-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leszczynska, D., Matuszewska, E., Kuczynska-Wisnik, D., Furmanek-Blaszk, B., & Laskowska, E. (2013). The formation of persister cells in stationary-phase cultures of Escherichia coli is associated with the aggregation of endogenous proteins. PLoS One, 8, e54737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis, K. (2010). Persister cells. Annual Review of Microbiology, 64, 357–372.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., & Zhang, Y. (2007). PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrobial Agents and Chemotherapy, 51, 2092–2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Yagi, M., Morita, T., & Aiba, H. (2008). Cleavage of mRNAs and role of tmRNA system under amino acid starvation in Escherichia coli. Molecular Microbiology, 68, 462–473.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Ji, L., Shi, W., Xie, J., & Zhang, Y. (2013). Trans-translation mediates tolerance to multiple antibiotics and stresses in Escherichia coli. The Journal of Antimicrobial Chemotherapy, 68, 2477–2481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindner, A. B., Madden, R., Demarez, A., Stewart, E. J., & Taddei, F. (2008). Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proceedings of the National Academy of Sciences of the United States of America, 105, 3076–3081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Little, J. W. (1991). Mechanism of specific LexA cleavage: Autodigestion and the role of RecA coprotease. Biochimie, 73, 411–421.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Wu, N., Zhang, S., Yuan, Y., Zhang, W., & Zhang, Y. (2017). Variable persister gene interactions with (p)ppGpp for persister formation in Escherichia coli. Frontiers in Microbiology, 8, 1795.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobritz, M. A., Belenky, P., Porter, C. B. M., Gutierrez, A., Yang, J. H., Schwarz, E. G., Dwyer, D. J., Khalil, A. S., & Collins, J. J. (2015). Antibiotic efficacy is linked to bacterial cellular respiration. Proceedings of the National Academy of Sciences, 112, 8173–8180.

    Article  CAS  Google Scholar 

  • Luidalepp, H., Jõers, A., Kaldalu, N., & Tenson, T. (2011). Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. Journal of Bacteriology, 193, 3598–3605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, Y., Pfuetzner, R. A., Mosimann, S., Paetzel, M., Frey, E. A., Cherney, M., Kim, B., Little, J. W., & Strynadka, N. C. J. (2001). Crystal structure of LexA: A conformational switch for regulation of self-cleavage. Cell, 106, 585–594.

    Article  CAS  PubMed  Google Scholar 

  • Ma, C., Sim, S., Shi, W., Du, L., Xing, D., & Zhang, Y. (2010). Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. FEMS Microbiology Letters, 303, 33–40.

    Article  CAS  PubMed  Google Scholar 

  • Michiels, J. E., Van den Bergh, B., Verstraeten, N., & Michiels, J. (2016). Molecular mechanisms and clinical implications of bacterial persistence. Drug Resistance Updates, 29, 76–89.

    Article  PubMed  Google Scholar 

  • Miller, C., Thomsen, L. E., Gaggero, C., Mosseri, R., Ingmer, H., & Cohen, S. N. (2004). SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science, 305, 1629–1631.

    Article  CAS  PubMed  Google Scholar 

  • Mok, W. W. K., & Brynildsen, M. P. (2018). Timing of DNA damage responses impacts persistence to fluoroquinolones. Proceedings of the National Academy of Sciences of the United States of America, 115, e6301–e6309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyed, H. S., & Bertrand, K. P. (1983). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology, 155, 768–775.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muffler, A., Fischer, D., Altuvia, S., Storz, G., & Hengge-Aronis, R. (1996). The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. The EMBO Journal, 15, 1333–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthuramalingam, M., White, J. C., & Bourne, C. R. (2016). Toxin-antitoxin modules are pliable switches activated by multiple protease pathways. Toxins, 8, 214–230.

    Article  PubMed Central  CAS  Google Scholar 

  • Nichols, R. J., Sen, S., Choo, Y. J., Beltrao, P., Zietek, M., Chaba, R., Lee, S., Kazmierczak, K. M., Lee, K. J., Wong, A., Shales, M., Lovett, S., Winkler, M. E., Krogan, N. J., Typas, A., & Gross, C. A. (2011). Phenotypic landscape of a bacterial cell. Cell, 144, 143–156.

    Article  CAS  PubMed  Google Scholar 

  • Norton, J. P., & Mulvey, M. A. (2012). Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathogens, 8, e1002954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opperman, T., Murli, S., Smith, B. T., & Walker, G. C. (1999). A model for a umuDC-dependent prokaryotic DNA damage checkpoint. Proceedings of the National Academy of Sciences of the United States of America, 96, 9218–9223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orman, M. A., & Brynildsen, M. P. (2013). Dormancy is not necessary or sufficient for bacterial persistence. Antimicrobial Agents and Chemotherapy, 57, 3230–3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orman, M. A., & Brynildsen, M. P. (2015). Inhibition of stationary phase respiration impairs persister formation in E. coli. Nature Communications, 6, 7983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page, R., & Peti, W. (2016). Toxin-antitoxin systems in bacterial growth arrest and persistence. Nature Chemical Biology, 12, 208–214.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, D. P., & Gerdes, K. (2005). Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Research, 33, 966–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons, C. A., & West, S. C. (1993). Formation of a RuvAB-holliday junction complex in vitro. Journal of Molecular Biology, 232, 397–405.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, K., Zavialov, A. V., Pavlov, M. Y., Elf, J., Gerdes, K., & Ehrenberg, M. (2003). The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell, 112, 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Petit, M. A., Bedale, W., Osipiuk, J., Lu, C., Rajagopalant, M., McInerney, P., Goodman, M. F., & Echols, H. (1994). Sequential folding of UmuC by the Hsp70 and Hsp60 chaperone complexes of Escherichia coli. The Journal of Biological Chemistry, 269, 23824–23829.

    CAS  PubMed  Google Scholar 

  • Potrykus, K., Murphy, H., Philippe, N., & Cashel, M. (2011). ppGpp is the major source of growth rate control in E. coli. Environmental Microbiology, 13, 563–575.

    Article  CAS  PubMed  Google Scholar 

  • Prysak, M. H., Mozdzierz, C. J., Cook, A. M., Zhu, L., Zhang, Y., Inouye, M., & Woychik, N. A. (2009). Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage. Molecular Microbiology, 71, 1071–1087.

    Article  CAS  PubMed  Google Scholar 

  • Pu, Y., Zhao, Z., Li, Y., Zou, J., Ma, Q., Zhao, Y., Ke, Y., Zhu, Y., Chen, H., Baker, M. A. B., Ge, H., Sun, Y., Xie, X. S., & Bai, F. (2016). Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Molecular Cell, 62, 284–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu, Y., Li, Y., Jin, X., Tian, T., Ma, Q., Zhao, Z., Lin, S., Chen, Z., Li, B., Yao, G., Leake, M. C., Lo, C.-J., & Bai, F. (2018). ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Molecular Cell, 73, 143–156.

    Article  PubMed  CAS  Google Scholar 

  • Radzikowski, J. L., Vedelaar, S., Siegel, D., Ortega, Á. D., Schmidt, A., & Heinemann, M. (2016). Bacterial persistence is an active σS stress response to metabolic flux limitation. Molecular Systems Biology, 12, 1–12.

    Article  CAS  Google Scholar 

  • Raivio, T. L. (2005). Envelope stress responses and Gram-negative bacterial pathogenesis. Molecular Microbiology, 56, 1119–1128.

    Article  CAS  PubMed  Google Scholar 

  • Ramisetty, B. C. M., Ghosh, D., Chowdhury, M. R., & Santhosh, R. S. (2017). What is the link between stringent response, endoribonuclease encoding type II toxin-antitoxin systems and persistence? Frontiers in Microbiology, 7, 1882.

    Google Scholar 

  • Rao, N. N., Liu, S., & Kornberg, A. (1998). Inorganic polyphosphate in Escherichia coli: The phosphate regulon and the stringent response. Journal of Bacteriology, 180, 2186–2193.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rice, C. D., Pollard, J. E., Lewis, Z. T., & McCleary, W. R. (2009). Employment of a promoter-swapping technique shows that PhoU modulates the activity of the PstSCAB2ABC transporter in Escherichia coli. Applied and Environmental Microbiology, 75, 573–582.

    Article  CAS  PubMed  Google Scholar 

  • Rotem, E., Loinger, A., Ronin, I., Levin-Reisman, I., Gabay, C., Shoresh, N., Biham, O., & Balaban, N. Q. (2010). Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proceedings of the National Academy of Sciences of the United States of America, 107, 12541–12546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe, M. T., & Kirk, R. (1999). An investigation into the phenomenon of cross-protection in Escherichia coli O157:H7. Food Microbiology, 16, 157–164.

    Article  Google Scholar 

  • Runyon, G. T., Bear, D. G., & Lohman, T. M. (1990). Escherichia coli helicase II (UvrD) protein initiates DNA unwinding at nicks and blunt ends. Proceedings of the National Academy of Sciences of the United States of America, 87, 6386–6393.

    Article  Google Scholar 

  • Sakoh, M., Ito, K., & Akiyama, Y. (2005). Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease from Escherichia coli. The Journal of Biological Chemistry, 280, 33305–33310.

    Article  CAS  PubMed  Google Scholar 

  • Santos-Beneit, F. (2015). The Pho regulon: A huge regulatory network in bacteria. Frontiers in Microbiology, 6, 1–13.

    Article  Google Scholar 

  • Sat, B., Hazan, R., Fisher, T., Khaner, H., Glaser, G., & Engelberg-Kulka, H. (2001). Programmed cell death in Escherichia coli: Some antibiotics can trigger mazEF lethality. Journal of Bacteriology, 183, 2041–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder, H., Langer, T., Hartl, F. U., & Bukau, B. (1993). DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. The EMBO Journal, 12, 4137–4144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seong, I. S., Oh, J. Y., Lee, J. W., Tanaka, K., & Chung, C. H. (2000). The HslU ATPase acts as a molecular chaperone in prevention of aggregation of SulA, an inhibitor of cell division in Escherichia coli. FEBS Letters, 477, 224–229.

    Article  CAS  PubMed  Google Scholar 

  • Shah, D., Zhang, Z., Khodursky, A., Kaldalu, N., Kurg, K., & Lewis, K. (2006). Persisters: A distinct physiological state of E. coli. BMC Microbiology, 6, 53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan, Y., Lazinski, D., Rowe, S., Camilli, A., & Lewis, K. (2015). Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. mBio, 6, e00078-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan, Y., Gandt, A. B., Rowe, S. E., Deisinger, J. P., Conlon, B. P., & Lewis, K. (2017). ATP-dependent persister formation in Escherichia coli. mBio, 8, e02267-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simmons, L. A., Foti, J. J., Cohen, S. E., & Walker, G. C. (2008). The SOS regulatory network. EcoSal Plus.

    Google Scholar 

  • Spira, B., Silberstein, N., & Yagil, E. (1995). Guanosine 3′,5′-bispyrophosphate (ppGpp) synthesis in cells of Escherichia coli starved for P(i). Journal of Bacteriology, 177, 4053–4058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoering, A. L., Vulić, M., & Lewis, K. (2006). GlpD and PlsB participate in persister cell formation in Escherichia coli. Journal of Bacteriology, 188, 5136–5144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steed, P. M., & Wanner, B. L. (1993). Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: Evidence of a new role for the PhoU protein in the phosphate regulon. Journal of Bacteriology, 175, 6797–6809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinsiek, S., Stagge, S., & Bettenbrock, K. (2014). Analysis of Escherichia coli mutants with a linear respiratory chain. PLoS One, 9, e87307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stewart, E. J., Madden, R., & Paul, G. (2005). Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology, 3, e45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tashiro, Y., Kawata, K., Taniuchi, A., Kakinuma, K., May, T., & Okabe, S. (2012). RelE-mediated dormancy is enhanced at high cell density in Escherichia coli. Journal of Bacteriology, 194, 1169–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodore, A., Lewis, K., & Vulić, M. (2013). Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway. Genetics, 195, 1265–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tramonti, A., Visca, P., De Canio, M., De Biase, D., & Falconi, M. (2002). Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. Journal of Bacteriology, 184, 2306–2613.

    Article  CAS  Google Scholar 

  • Tripathi, A., Dewan, P. C., Siddique, S. A., & Varadarajan, R. (2014). MazF-induced growth inhibition and persister generation in Escherichia coli. The Journal of Biological Chemistry, 289, 4191–4205.

    Article  CAS  PubMed  Google Scholar 

  • Tuteja, N., & Tuteja, R. (2004). Prokaryotic and eukaryotic DNA helicases: Essential molecular motor proteins for cellular machinery. European Journal of Biochemistry, 271, 1835–1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unden, G., & Bongaerts, J. (1997). Alternative respiratory pathways of Escherichia coli: Energetics and transcriptional regulation in response to electron acceptors. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1320, 217–234.

    Article  CAS  Google Scholar 

  • Van den Bergh, B., Michiels, J. E., Wenseleers, T., Windels, E. M., Vanden, B. P., Kestemont, D., De Meester, L., Verstrepen, K. J., Verstraeten, N., Fauvart, M., & Michiels, J. (2016). Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nature Microbiology, 1, 16020.

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Laslop, N., Lee, H., & Neyfakh, A. A. (2006). Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. Journal of Bacteriology, 188, 3494–3497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vega, N. M., Allison, K. R., Khalil, A. S., & Collins, J. J. (2012). Signaling-mediated bacterial persister formation. Nature Chemical Biology, 8, 431–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstraeten, N., Knapen, W. J., Kint, C. I., Liebens, V., Van den Bergh, B., Dewachter, L., Michiels, J. E., Fu, Q., David, C. C., Fierro, A. C., Marchal, K., Beirlant, J., Versées, W., Hofkens, J., Jansen, M., Fauvart, M., & Michiels, J. (2015). Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Molecular Cell, 59, 9–21.

    Article  CAS  PubMed  Google Scholar 

  • Vinella, D., Albrecht, C., Cashel, M., & D’Ari, R. (2005). Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Molecular Microbiology, 56, 958–970.

    Article  CAS  PubMed  Google Scholar 

  • Völzing, K. G., & Brynildsen, M. P. (2015). Stationary-phase persisters to ofloxacin sustain DNA damage and require repair systems only during recovery. mBio, 6, e00731–e00746.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Lord, D. M., Cheng, H. Y., Osbourne, D. O., Hong, S. H., Sanchez-Torres, V., Quiroga, C., Zheng, K., Herrmann, T., Peti, W., Benedik, M. J., Page, R., & Wood, T. K. (2012). A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nature Chemical Biology, 8, 855–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Lord, D. M., Hong, S. H., Peti, W., Benedik, M. J., Page, R., & Wood, T. K. (2013). Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS. Environmental Microbiology, 15, 1734–1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J. H., Singh, R., Benoit, M., Keyhan, M., Sylvester, M., Hsieh, M., Thathireddy, A., Hsieh, Y. J., & Matin, A. C. (2014). Sigma S-dependent antioxidant defense protects stationary-phase Escherichia coli against the bactericidal antibiotic gentamicin. Antimicrobial Agents and Chemotherapy, 58, 5964–5975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, T., El Meouche, I., & Dunlop, M. J. (2017). Bacterial persistence induced by salicylate via reactive oxygen species. Scientific Reports, 7, 43839.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber, H. H., Polen, T. T., Heuveling, J. J., Wendisch, V. F. V. F., & Hengge-Aronis, R. (2005). Genome-wide analysis of the general stress response network in Escherichia coli: SigmaS-dependent genes, promoters, and sigma factor selectivity. Journal of Bacteriology, 187, 1591–1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wessner, F., Lacoux, C., Goeders, N., Fouquier d’Hérouel, A., Matos, R., Serror, P., Van Melderen, L., & Repoila, F. (2015). Regulatory crosstalk between type I and type II toxin-antitoxin systems in the human pathogen Enterococcus faecalis. RNA Biology, 12, 1099–1108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilmaerts, D., Bayoumi, M., Dewachter, L., Knapen, W., Mika, J. T., Hofkens, J., Dedecker, P., Maglia, G., Verstraeten, N., & Michiels, J. (2018). The persistence-inducing toxin HokB forms dynamic pores that cause ATP leakage. mBio, 9, e00744-18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wout, P., Pu, K., Sullivan, S. M., Reese, V., Zhou, S., Lin, B., & Maddock, J. R. (2004). The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase. Journal of Bacteriology, 186, 5249–5257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., Vulić, M., Keren, I., & Lewis, K. (2012). Role of oxidative stress in persister tolerance. Antimicrobial Agents and Chemotherapy, 56, 4922–4926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, N., He, L., Cui, P., Wang, W., Yuan, Y., Liu, S., Xu, T., Zhang, S., Wu, J., Zhang, W., & Zhang, Y. (2015). Ranking of persister genes in the same Escherichia coli genetic background demonstrates varying importance of individual persister genes in tolerance to different antibiotics. Frontiers in Microbiology, 6, 1003.

    PubMed  PubMed Central  Google Scholar 

  • Xiao, H., Kalman, M., Ikehara, K., Zemel, S., Glaser, G., & Cashel, M. (1991). Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. The Journal of Biological Chemistry, 266, 5980–5990.

    CAS  PubMed  Google Scholar 

  • Yamaguchi, Y., Park, J. H., & Inouye, M. (2009). MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. The Journal of Biological Chemistry, 284, 28746–28753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka, K., & Inouye, M. (1997). Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. Journal of Bacteriology, 176, 5126–5130.

    Article  Google Scholar 

  • Yamanaka, K., Zheng, W., Crooke, E., Wang, Y. H., & Inouye, M. (2001). CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Molecular Microbiology, 39, 1572–1584.

    Article  CAS  PubMed  Google Scholar 

  • Yim, H. H., Brems, R. L., & Villarejo, M. (1994). Molecular characterization of the promoter of osmY, an rpoS-dependent gene. Journal of Bacteriology, 176, 100–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., & Inouye, M. (2011). RatA (YfjG), an Escherichia coli toxin, inhibits 70S ribosome association to block translation initiation. Molecular Microbiology, 79, 1418–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Zhang, J., Hara, H., Kato, I., & Inouye, M. (2005). Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase. The Journal of Biological Chemistry, 280, 3143–3150.

    Article  CAS  PubMed  Google Scholar 

  • Zolkiewski, M. (1999). ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. Journal of Biological Chemistry, 274, 28083–28086.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Michiels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilmaerts, D., Herpels, P., Michiels, J., Verstraeten, N. (2019). Genetic Determinants of Persistence in Escherichia coli . In: Lewis, K. (eds) Persister Cells and Infectious Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-25241-0_7

Download citation

Publish with us

Policies and ethics