Skip to main content

Genetic Diversity of Methylotrophic Yeast and Their Impact on Environments

  • Chapter
  • First Online:
Recent Advancement in White Biotechnology Through Fungi

Abstract

Prokaryotic methylotrophic bacteria are able to consume a number of C1-carbon compounds such as methane, methylamine and methanol, whereas only methanol can be consumed by eukaryotic methylotrophic bacteria as source of carbon and methylamine as a source of nitrogen. The intensive researches explain the beneficial relationship between plants and methylotrophic bacterial communities earlier. Different genera of methylotrophic yeasts such as Candida, Pichia, Torulopsis and Hansenula are able to metabolise C1 corbon compound like formaldehyde and methanol.and a number of genes are involved in the methanol and other substrate utilisation pathways such as AOX (alcohol oxidase), DAS (dihydroxyacetone synthase), FDH (format dehydrogenase) and DAK (dihydroxyacetone kinase). The phylogeny and identification of these methylotrophic yeast strains are done based on either conserved gene sequences or functional gene sequences. The current description involves the genetic diversity of different strains of methylotrophic yeast from various ecosystems, identified at gene level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad S, Kitz K, Hörmann A, Schreiner U, Hartner FS, Glieder A (2010) Real-time PCR-based determination of gene copy numbers in Pichia pastoris. Biotechnol J 5:413–420

    Article  CAS  Google Scholar 

  • Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317

    Article  CAS  Google Scholar 

  • Arthur H, Watson K (1976) Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. J Bacteriol 128:56–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Kundu D, Mazumdar S, Saha A, Majumdar B, Ghorai A, Ghosh D, Yadav A, Saxena A (2018) Study on the activity and diversity of bacteria in a New Gangetic alluvial soil (Eutrocrept) under rice-wheat-jute cropping system. J Environ Biol 39:379–386

    Article  CAS  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  Google Scholar 

  • Colao MC, Lupino S, Garzillo AM, Buonocore V, Ruzzi M (2006) Heterologous expression of lcc1 gene from Trametes trogii in Pichia pastoris and characterization of the recombinant enzyme. Microb Cell Factories 5:31

    Article  Google Scholar 

  • Craveri R, Cavazzoni V, Sarra P, Succi G, Molteni L, Cardini G, Di Fiore L (1976) Taxonomical examination and characterization of a methanol-utilizing yeast. Antonie Van Leeuwenhoek 42:533–540

    Article  CAS  Google Scholar 

  • Cregg JM, Madden K, Barringer K, Thill G, Stillman C (1989) Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol Cell Biol 9:1316–1323

    Article  CAS  Google Scholar 

  • Cremata JA, Díaz JM (1999) Conventional and non-conventional yeasts in modern biotechnology. Biotecnol Apl 16:117–125

    Google Scholar 

  • Csutak O, Stoica I, Ghindea R, Tanase A-M, Vassu T (2010) Insights on yeast bioremediation processes. Rom Biotechnol Lett 15:5066–5071

    CAS  Google Scholar 

  • de Koning W, Harder W (1992) Methanol-utilizing yeasts. In: Murrell JC, Dalton H (eds) Methane and methanol utilizers. Springer US, Boston, pp 207–244. https://doi.org/10.1007/978-1-4899-2338-7_7

    Chapter  Google Scholar 

  • Fang Z, Chen Z, Wang S, Shi P, Shen Y, Zhang Y, Xiao J, Huang Z (2017) Overexpression of OLE1 enhances cytoplasmic membrane stability and confers resistance to cadmium in Saccharomyces cerevisiae. Appl Environ Microbiol 83:e02319–e02316

    Article  CAS  Google Scholar 

  • Gellissen G, Melber K (1996) Methylotrophic yeast hansenula polymorpha as production organism for recombinant pharmaceuticals. Arzneimittelforschung 46:943–948

    CAS  PubMed  Google Scholar 

  • Hartner FS, Glieder A (2006) Regulation of methanol utilisation pathway genes in yeasts. Microb Cell Factories 5:39

    Article  Google Scholar 

  • Hong J, Park S-H, Kim S, Kim S-W, Hahn J-S (2019) Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Appl Microbiol Biotechnol 103:211–223

    Article  CAS  Google Scholar 

  • Kaszycki P, Koloczek H (2002) Biodegradation of formaldehyde and its derivatives in industrial wastewater with methylotrophic yeast Hansenula polymorpha and with the yeast-bioaugmented activated sludge. Biodegradation 13:91–99

    Article  CAS  Google Scholar 

  • Kaszycki P, Tyszka M, Malec P, KoÅ‚oczek H (2001) Formaldehyde and methanol biodegradation with the methylotrophic yeast Hansenula polymorpha. An application to real wastewater treatment. Biodegradation 12:169–177

    Article  CAS  Google Scholar 

  • Kaszycki P, Czechowska K, Petryszak P, Miedzobrodzki J, Pawlik B, Koloczek H (2006) Methylotrophic extremophilic yeast Trichosporon sp.: a soil-derived isolate with potential applications in environmental biotechnology. Acta Biochim Pol 53:463

    CAS  PubMed  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A, Tomar RS (2019) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia 74:287–308

    Article  CAS  Google Scholar 

  • Kurtzman CP (2009) Biotechnological strains of Komagataella (Pichia) pastoris are Komagataellaphaffii as determined from multigene sequence analysis. J Ind Microbiol Biotechnol 36:1435

    Article  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (2010) Systematics of methanol assimilating yeasts and neighboring taxa from multigene sequence analysis and the proposal of Peterozyma gen. nov., a new member of the Saccharomycetales. FEMS Yeast Res 10:353–361

    Article  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8:939–954

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M (2011) Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett 33:1–9

    Google Scholar 

  • Leão-Helder AN, Krikken AM, Van der Klei IJ, Kiel JA, Veenhuis M (2003) Transcriptional down-regulation of peroxisome numbers affects selective peroxisome degradation in Hansenula polymorpha. J Biol Chem 278:40749–40756

    Article  Google Scholar 

  • Limtong S, Srisuk N, Yongmanitchai W, Yurimoto H, Nakase T, Kato N (2005) Pichia thermomethanolica sp. nov., a novel thermotolerant, methylotrophic yeast isolated in Thailand. Int J Syst Evol Microbiol 55:2225–2229. https://doi.org/10.1099/ijs.0.63712-0

    Article  CAS  PubMed  Google Scholar 

  • Limtong S, Srisuk N, Yongmanitchai W, Yurimoto H, Nakase T (2008) Ogataea chonburiensis sp. nov. and Ogataea nakhonphanomensis sp. nov., thermotolerant, methylotrophic yeast species isolated in Thailand, and transfer of Pichia siamensis and Pichia thermomethanolica to the genus Ogataea. Int J Syst Evol Microbiol 58:302–307

    Article  CAS  Google Scholar 

  • Lin-Cereghino GP, Godfrey L, Bernard J, Johnson S, Khuongsathiene S, Tolstorukov I, Yan M, Lin-Cereghino J, Veenhuis M, Subramani S (2006) Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris. Mol Cell Biol 26:883–897

    Article  CAS  Google Scholar 

  • Lu Y-F, Wang M, Zheng J, Hui F-L (2017) Ogataea neixiangensis sp. nov. and Ogataea paraovalis fa, sp. nov., two methanol-assimilating yeast species isolated from rotting wood. Int J Syst Evol Microbiol 67:3038–3042

    Article  CAS  Google Scholar 

  • Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK, Arora DK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101:777–786

    Article  CAS  Google Scholar 

  • Mitsui R, Kusano Y, Yurimoto H, Sakai Y, Kato N, Tanaka M (2003) Formaldehyde fixation contributes to detoxification for growth of a nonmethylotroph, Burkholderia cepacia TM1, on vanillic acid. Appl Environ Microbiol 69:6128–6132

    Article  CAS  Google Scholar 

  • Morais PB, Teixeira LC, Bowles JM, Lachance M-A, Rosa CA (2004) Ogataea falcaomoraisii sp. nov., a sporogenous methylotrophic yeast from tree exudates. FEMS Yeast Res 5:81–85

    Article  CAS  Google Scholar 

  • Nakagawa T, Mukaiyama H, Yurimoto H, Sakai Y, Kato N (1999) Alcohol oxidase hybrid oligomers formed in vivo and in vitro. Yeast 15:1223–1230

    Article  CAS  Google Scholar 

  • Nakagawa T, Miyaji T, Yurimoto H, Sakai Y, Kato N, Tomizuka N (2000) A methylotrophic pathway participates in pectin utilization by Candida boidinii. Appl Environ Microbiol 66:4253–4257

    Article  CAS  Google Scholar 

  • Nakase T, Imanishi Y, Ninomiya S, Takashima M (2010) Candida rishirensis sp. nov., a novel methylotrophic anamorphic yeast species isolated from soil on Rishiri Island in Japan. J Gen Appl Microbiol 56:169–173

    Article  CAS  Google Scholar 

  • Naumov GI, Naumova ES, Lee C-F (2017) Ogataea haglerorum sp. nov., a novel member of the species complex, Ogataea (Hansenula) polymorpha. Int J Syst Evol Microbiol 67:2465–2469

    Article  CAS  Google Scholar 

  • Naumov G, Shalamitskiy MY, Naumova E, Lee C-F (2018) Phylogenetics, biogeography, and ecology of methylotrophic yeasts of the heterogeneous genus Ogataea: achivements and prospects. Microbiology 87:443–452

    Article  CAS  Google Scholar 

  • Negruţă O, Csutak O, Stoica I, Rusu E, Vassu T (2010) Methylotrophic yeasts: diversity and methanol metabolism. Rom Biotechnol Lett 15:5369–5375

    Google Scholar 

  • Ohsawa S, Nishida S, Oku M, Sakai Y, Yurimoto H (2018) Ethanol represses the expression of methanol-inducible genes via acetyl-CoA synthesis in the yeast Komagataella phaffii. Sci Rep 8:18051

    Article  Google Scholar 

  • Okonechnikov K, Golosova O, Fursov M, Team U (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167

    Article  CAS  Google Scholar 

  • Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44:2636–2639

    Article  CAS  Google Scholar 

  • Péter G, Tornai-Lehoczki J, Dlauchy D (2008) Ogataea nitratoaversa sp. nov., a methylotrophic yeast species from temperate forest habitats. Antonie Van Leeuwenhoek 94:217

    Article  Google Scholar 

  • Phithakrotchanakoon C, Puseenam A, Phaonakrop N, Roytrakul S, Tanapongpipat S, Roongsawang N (2018) Hac1 function revealed by the protein expression profile of a OtHAC1 mutant of thermotolerant methylotrophic yeast Ogataea thermomethanolica. Mol Biol Rep 45:1311–1319

    Article  CAS  Google Scholar 

  • Pozzolini M, Scarfì S, Mussino F, Salis A, Damonte G, Benatti U, Giovine M (2015) Pichia pastoris production of a prolyl 4-hydroxylase derived from Chondrosia reniformis sponge: a new biotechnological tool for the recombinant production of marine collagen. J Biotechnol 208:28–36

    Article  CAS  Google Scholar 

  • Prasitchoke P, Kaneko Y, Bamba T, Fukusaki E, Kobayashi A, Harashima S (2007) Identification and characterization of a very long-chain fatty acid elongase gene in the methylotrophic yeast, Hansenula polymorpha. Gene 391:16–25

    Article  CAS  Google Scholar 

  • Puseenam A, Kocharin K, Tanapongpipat S, Eurwilaichitr L, Ingsriswang S, Roongsawang N (2018) A novel sucrose-based expression system for heterologous proteins expression in thermotolerant methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiol Lett 365:238

    Article  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2018) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:1–30

    Google Scholar 

  • Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham

    Book  Google Scholar 

  • Ravin NV, Eldarov MA, Kadnikov VV, Beletsky AV, Schneider J, Mardanova ES, Smekalova EM, Zvereva MI, Dontsova OA, Mardanov AV (2013) Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics 14:837

    Article  Google Scholar 

  • Řezanka T, Lukavský J, Vítová M, Nedbalová L, Sigler K (2018) Lipidomic analysis of Botryococcus (Trebouxiophyceae, Chlorophyta)-identification of lipid classes containing very long chain fatty acids by offline two-dimensional LC-tandem MS. Phytochemistry 148:29–38

    Article  Google Scholar 

  • Sahu U, Rao KK, Rangarajan PN (2014) Trm1p, a Zn (II) 2Cys6-type transcription factor, is essential for the transcriptional activation of genes of methanol utilization pathway, in Pichia pastoris. Biochem Biophys Res Commun 451:158–164

    Article  CAS  Google Scholar 

  • Sakai Y, Nakagawa T, Shimase M, Kato N (1998) Regulation and physiological role of theDAS1 gene, encoding dihydroxyacetone synthase, in the methylotrophic yeast Candida boidinii. J Bacteriol 180:5885–5890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smutok O, Broda D, Smutok H, Dmytruk K, Gonchar M (2011) Chromate-reducing activity of Hansenula polymorpha recombinant cells over-producing flavocytochrome b2. Chemosphere 83:449–454

    Article  CAS  Google Scholar 

  • Suh S-O, Zhou JJ (2010) Methylotrophic yeasts near Ogataea (Hansenula) polymorpha: a proposal of Ogataea angusta comb. nov. and Candida parapolymorpha sp. nov. FEMS Yeast Res 10:631–638

    CAS  PubMed  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer-Verlag, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Tani Y, Yamada K (1987) Diversity in glycerol metabolism of methylotrophic yeasts. FEMS Microbiol Lett 40:151–153

    Article  CAS  Google Scholar 

  • Tschopp JF, Brust PF, Cregg JM, Stillman CA, Gingeras TR (1987) Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res 15:3859–3876

    Article  CAS  Google Scholar 

  • van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M (2006) The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim Biophys Acta 1763:1453–1462

    Article  Google Scholar 

  • Veenhuis M, Van Der Klei I, Titorenko V, Harder W (1992) Hansenula polymorpha: an attractive model organism for molecular studies of peroxisome biogenesis and function. FEMS Microbiol Lett 100:393–403

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10:219–227

    CAS  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol App Sci 3:432–447

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015b) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.01.042

  • Wang X, Wang Q, Wang J, Bai P, Shi L, Shen W, Zhou M, Zhou X, Zhang Y, Cai M (2016) Mit1 transcription factor mediates methanol signaling and regulates the alcohol oxidase 1 (AOX1) promoter in Pichia pastoris. J Biol Chem 291:6245–6261

    Article  CAS  Google Scholar 

  • Yadav AN (2009) Studies of Methylotrophic Community from the phyllosphere and rhizosphere of tropical crop plants. M.Sc. Thesis, Bundelkhand University, pp 66, https://doi.org/10.13140/2.1.5099.0888

  • Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. Ph.D. Thesis, IARI, New Delhi/BIT, Ranchi pp 234, https://doi.org/10.13140/RG.2.1.2948.1283/2

  • Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious pgp attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4

    Google Scholar 

  • Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:1–8

    Google Scholar 

  • Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2:85–88

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693

    Article  CAS  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108

    Article  CAS  Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015c) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629

    Article  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Yadav N, Sachan SG, Saxena AK (2019c) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol. Online first

    Google Scholar 

  • Yamada Y, Maeda K, Mikata K (1994) The phylogenetic relationships of the hat-shaped ascospore-forming, nitrate-assimilating Pichia species, formerly classified in the genus Hansenula Sydow et Sydow, based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae): the proposals of three new genera, Ogataea, Kuraishia, and Nakazawaea. Biosci Biotechnol Biochem 58:1245–1257

    Article  CAS  Google Scholar 

  • Yamashita S, Yurimoto H, Murakami D, Yoshikawa M, Oku M, Sakai Y (2009) Lag-phase autophagy in the methylotrophic yeast Pichia pastoris. Genes Cells 14:861–870

    Article  CAS  Google Scholar 

  • Yoo SJ, Moon HY, Kang HA (2019) Screening and selection of production strains: secretory protein expression and analysis in Hansenula polymorpha. In: Gasser B, Mattanovich D (eds) Recombinant protein production in yeast. Springer New York, New York, pp 133–151

    Chapter  Google Scholar 

  • Young EM, Comer AD, Huang H, Alper HS (2012) A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab Eng 14:401–411

    Article  CAS  Google Scholar 

  • Yurimoto H, Sakai Y, Kato N (2002) Methanol metabolism. In: Gellissen G (ed) Hansenula polymorpha. https://doi.org/10.1002/3527602356.ch5

    Chapter  Google Scholar 

  • Yurimoto H, Oku M, Sakai Y (2011) Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis. Int J Microbiol 2011:101298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajar Nath Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, M. et al. (2019). Genetic Diversity of Methylotrophic Yeast and Their Impact on Environments. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-25506-0_3

Download citation

Publish with us

Policies and ethics