Skip to main content

A Brief Review of Image Denoising Algorithms and Beyond

  • Conference paper
  • First Online:
Inpainting and Denoising Challenges

Part of the book series: The Springer Series on Challenges in Machine Learning ((SSCML))

Abstract

The recent advances in hardware and imaging systems made the digital cameras ubiquitous. Although the development of hardware has steadily improved the quality of images for the last several decades, image degradation is unavoidable due to the many factors affecting the image acquisition process and the subsequent post-processing. Image denoising, which aims to reconstruct a high quality image from its degraded observation, is a classical yet still very active topic in the area of low-level computer vision. It represents an important building block in real applications such as digital photography, medical image analysis, remote sensing, surveillance and digital entertainment. Also, image denoising constitutes an ideal test bed for evaluating image prior modeling methods. In this paper, we briefly review recent progresses in image denoising. We firstly present an overview of prior modeling approaches used in image denoising task. Then, we review conventional sparse representation based denoising algorithms, low-rank based denoising algorithms and recently proposed deep neural networks based approaches. At last, we discuss some emerging topics and open problems about image denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Abdelhamed, S. Lin, and M. S. Brown. A high-quality denoising dataset for smartphone cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1692–1700, 2018.

    Google Scholar 

  2. E. Agustsson and R. Timofte. Ntire 2017 challenge on single image super-resolution: Dataset and study. In CVPR Workshops, 2017.

    Google Scholar 

  3. M. Aharon, M. Elad, and A. Bruckstein. rmk-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on signal processing, 2006.

    Google Scholar 

  4. L. Azzari and A. Foi. Variance stabilization for noisy+ estimate combination in iterative poisson denoising. IEEE Signal Process. Lett., 23(8):1086–1090, 2016.

    Article  Google Scholar 

  5. A. J. Bell and T. J. Sejnowski. The “independent components” of natural scenes are edge filters. Vision research, 37(23):3327–3338, 1997.

    Article  Google Scholar 

  6. Y. Blau, R. Mechrez, R. Timofte, T. Michaeli, and L. Zelnik-Manor. 2018 pirm challenge on perceptual image super-resolution. arXiv preprint arXiv:1809.07517, 2018.

    Google Scholar 

  7. A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In Computer Vision and Pattern Recognition (CVPR), 2005.

    Google Scholar 

  8. A. Buades, B. Coll, and J.-M. Morel. A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation, 4(2):490–530, 2005.

    Article  MathSciNet  Google Scholar 

  9. H. C. Burger, C. Schuler, and S. Harmeling. Learning how to combine internal and external denoising methods. In GCPR, 2013.

    Google Scholar 

  10. E. J. Candès and D. L. Donoho. Ridgelets: A key to higher-dimensional intermittency? Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 357(1760):2495–2509, 1999.

    Article  MathSciNet  Google Scholar 

  11. E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM, 58(3):11, 2011.

    Google Scholar 

  12. E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of Computational mathematics, 9(6):717–772, 2009.

    Article  MathSciNet  Google Scholar 

  13. E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted 1 minimization. Journal of Fourier analysis and applications, 14(5–6):877–905, 2008.

    Article  MathSciNet  Google Scholar 

  14. A. Chambolle. An algorithm for total variation minimization and applications. Journal of Mathematical imaging and vision, 20(1–2):89–97, 2004.

    MathSciNet  MATH  Google Scholar 

  15. R. H. Chan, C.-W. Ho, and M. Nikolova. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Transactions on image processing, 14(10):1479–1485, 2005.

    Article  Google Scholar 

  16. T. Chan, A. Marquina, and P. Mulet. High-order total variation-based image restoration. SIAM Journal on Scientific Computing, 22(2):503–516, 2000.

    Article  MathSciNet  Google Scholar 

  17. T. F. Chan and S. Esedoglu. Aspects of total variation regularized l 1 function approximation. SIAM Journal on Applied Mathematics, 65(5):1817–1837, 2005.

    Article  MathSciNet  Google Scholar 

  18. P. Chatterjee and P. Milanfar. Patch-based near-optimal image denoising. IEEE Transactions on Image Processing, 21(4):1635–1649, 2012.

    Article  MathSciNet  Google Scholar 

  19. J. Chen, J. Chen, H. Chao, and M. Yang. Image blind denoising with generative adversarial network based noise modeling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3155–3164, 2018.

    Google Scholar 

  20. T. Chen, K.-K. Ma, and L.-H. Chen. Tri-state median filter for image denoising. IEEE Transactions on Image processing, 8(12):1834–1838, 1999.

    Article  Google Scholar 

  21. Y. Chen and T. Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE transactions on pattern analysis and machine intelligence, 2017.

    Google Scholar 

  22. Y. Chen, R. Ranftl, and T. Pock. Insights into analysis operator learning: From patch-based sparse models to higher order mrfs. IEEE Transactions on Image Processing, 23(3):1060–1072, 2014.

    Article  MathSciNet  Google Scholar 

  23. Y. Chen, W. Yu, and T. Pock. On learning optimized reaction diffusion processes for effective image restoration. In IEEE Conference on Computer Vision and Pattern Recognition, 2015.

    Google Scholar 

  24. T. S. Cho, N. Joshi, C. L. Zitnick, S. B. Kang, R. Szeliski, and W. T. Freeman. A content-aware image prior. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010.

    Google Scholar 

  25. R. R. Coifman and D. L. Donoho. Translation-invariant de-noising. Springer, 1995.

    Book  Google Scholar 

  26. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on image processing, 2007.

    Google Scholar 

  27. C.-A. Deledalle, F. Tupin, and L. Denis. Poisson nl means: Unsupervised non local means for poisson noise. In Image processing (ICIP), 2010 17th IEEE international conference on, pages 801–804. IEEE, 2010.

    Google Scholar 

  28. M. N. Do and M. Vetterli. The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on image processing, 14(12):2091–2106, 2005.

    Article  Google Scholar 

  29. W. Dong, G. Shi, X. Li, Y. Ma, and F. Huang. Compressive sensing via nonlocal low-rank regularization. IEEE Transaction on Image Processing, 23(8):3618–3632, 2014.

    Article  MathSciNet  Google Scholar 

  30. D. L. Donoho. De-noising by soft-thresholding. IEEE transactions on information theory, 41(3):613–627, 1995.

    Article  MathSciNet  Google Scholar 

  31. B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al. Least angle regression. The Annals of statistics, 32(2):407–499, 2004.

    Article  MathSciNet  Google Scholar 

  32. M. Elad, P. Milanfar, and R. Rubinstein. Analysis versus synthesis in signal priors. Inverse problems, 23(3):947, 2007.

    Google Scholar 

  33. S. Esakkirajan, T. Veerakumar, A. N. Subramanyam, and C. PremChand. Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter. IEEE Signal processing letters, 18(5):287–290, 2011.

    Article  Google Scholar 

  34. D. J. Field. Relations between the statistics of natural images and the response properties of cortical cells. JOSA A, 4(12):2379–2394, 1987.

    Article  Google Scholar 

  35. W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-level vision. International journal of computer vision, 40(1):25–47, 2000.

    Article  Google Scholar 

  36. R. Giryes and M. Elad. Sparsity-based poisson denoising with dictionary learning. IEEE Transactions on Image Processing, 23(12):5057–5069, 2014.

    Article  MathSciNet  Google Scholar 

  37. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680, 2014.

    Google Scholar 

  38. S. Gu, R. Timofte, and L. Van Gool. Integrating local and non-local denoiser priors for image restoration. In 2018 24th International Conference on Pattern Recognition (ICPR), pages 2923–2928. IEEE, 2018.

    Google Scholar 

  39. S. Gu, R. Timofte, and L. Van Gool. Multi-bin trainable linear unit for fast image restoration networks. arXiv preprint arXiv:1807.11389, 2018.

    Google Scholar 

  40. S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang. Weighted nuclear norm minimization and its applications to low level vision. International Journal of Computer Vision, pages 1–26, 2016.

    Google Scholar 

  41. S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang. Weighted nuclear norm minimization and its applications to low level vision. International journal of computer vision, 2017.

    Google Scholar 

  42. S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear norm minimization with application to image denoising. In CVPR, 2014.

    Google Scholar 

  43. S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang. Toward convolutional blind denoising of real photographs. arXiv preprint arXiv:1807.04686, 2018.

    Google Scholar 

  44. S. Hawe, M. Kleinsteuber, and K. Diepold. Analysis operator learning and its application to image reconstruction. IEEE Transactions on Image Processing, 22(6):2138–2150, 2013.

    Article  MathSciNet  Google Scholar 

  45. A. Ignatov, N. Kobyshev, R. Timofte, K. Vanhoey, and L. Van Gool. Wespe: Weakly supervised photo enhancer for digital cameras. arXiv preprint arXiv:1709.01118, 2017.

    Google Scholar 

  46. A. Ignatov, R. Timofte, T. Van Vu, T. M. Luu, T. X. Pham, C. Van Nguyen, Y. Kim, J.-S. Choi, M. Kim, J. Huang, et al. Pirm challenge on perceptual image enhancement on smartphones: Report. arXiv preprint arXiv:1810.01641, 2018.

    Google Scholar 

  47. S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

    Google Scholar 

  48. V. Jain and S. Seung. Natural image denoising with convolutional networks. In Advances in Neural Information Processing Systems, pages 769–776, 2009.

    Google Scholar 

  49. H. Ji, C. Liu, Z. Shen, and Y. Xu. Robust video denoising using low rank matrix completion. In IEEE Conference on Computer Vision and Pattern Recognition, 2010.

    Google Scholar 

  50. J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In European Conference on Computer Vision, pages 694–711. Springer, 2016.

    Google Scholar 

  51. D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution using a normalized sparsity measure. In IEEE Conference on Computer Vision and Pattern Recognition, 2011.

    Google Scholar 

  52. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

    Google Scholar 

  53. C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, et al. Photo-realistic single image super-resolution using a generative adversarial network. In CVPR, volume 2, page 4, 2017.

    Google Scholar 

  54. A. Levin and B. Nadler. Natural image denoising: Optimality and inherent bounds. In CVPR 2011, pages 2833–2840. IEEE, 2011.

    Google Scholar 

  55. A. Levin, B. Nadler, F. Durand, and W. T. Freeman. Patch complexity, finite pixel correlations and optimal denoising. In European Conference on Computer Vision, pages 73–86. Springer, 2012.

    Google Scholar 

  56. D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization. Mathematical programming, 45(1–3):503–528, 1989.

    Article  MathSciNet  Google Scholar 

  57. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. In IEEE International Conference on Computer Vision, 2009.

    Google Scholar 

  58. S. G. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE transactions on pattern analysis and machine intelligence, 11(7):674–693, 1989.

    Article  Google Scholar 

  59. S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on signal processing, 41(12):3397–3415, 1993.

    Article  Google Scholar 

  60. X. Mao, C. Shen, and Y.-B. Yang. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In Advances in neural information processing systems, pages 2802–2810, 2016.

    Google Scholar 

  61. D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423, July 2001.

    Google Scholar 

  62. P. Milanfar. A tour of modern image filtering: New insights and methods, both practical and theoretical. IEEE Signal Processing Magazine, 30(1):106–128, 2013.

    Article  Google Scholar 

  63. I. Mosseri, M. Zontak, and M. Irani. Combining the power of internal and external denoising. In IEEE International Conference on Computational Photography (ICCP), page 1–9, 2013.

    Google Scholar 

  64. M. C. Motwani, M. C. Gadiya, R. C. Motwani, and F. C. Harris. Survey of image denoising techniques. In Proceedings of GSPX, pages 27–30, 2004.

    Google Scholar 

  65. V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010.

    Google Scholar 

  66. T.-H. Oh, H. Kim, Y.-W. Tai, J.-C. Bazin, and I. S. Kweon. Partial sum minimization of singular values in rpca for low-level vision. In IEEE International Conference on Computer Vision, 2013.

    Google Scholar 

  67. N. Parikh, S. P. Boyd, et al. Proximal algorithms.

    Google Scholar 

  68. Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Conference on Signals, Systems and Computers, 1993.

    Google Scholar 

  69. P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7):629–639, 1990.

    Article  Google Scholar 

  70. T. Plötz and S. Roth. Benchmarking denoising algorithms with real photographs. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 2750–2759. IEEE, 2017.

    Google Scholar 

  71. S. Ravishankar and Y. Bresler. Learning sparsifying transforms. IEEE Transactions on Signal Processing, 61(5):1072–1086.

    Google Scholar 

  72. S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In IEEE Conference on Computer Vision and Pattern Recognition, 2005.

    Google Scholar 

  73. R. Rubinstein, A. M. Bruckstein, and M. Elad. Dictionaries for sparse representation modeling. Proceedings of the IEEE, 98(6):1045–1057, 2010.

    Article  Google Scholar 

  74. R. Rubinstein, T. Peleg, and M. Elad. Analysis k-svd: a dictionary-learning algorithm for the analysis sparse model. IEEE Transactions on Signal Processing, 61(3):661–677, 2013.

    Article  MathSciNet  Google Scholar 

  75. L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.

    Article  MathSciNet  Google Scholar 

  76. S. Ruslan and N. Srebro. Collaborative filtering in a non-uniform world: Learning with the weighted trace norm. In Conference on Neural Information Processing Systems, 2010.

    Google Scholar 

  77. U. Schmidt and S. Roth. Shrinkage fields for effective image restoration. In IEEE Conference on Computer Vision and Pattern Recognition, 2014.

    Google Scholar 

  78. C. J. Schuler, H. Christopher Burger, S. Harmeling, and B. Scholkopf. A machine learning approach for non-blind image deconvolution. In CVPR, 2013.

    Google Scholar 

  79. Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent memory network for image restoration. In CVPR, 2017.

    Google Scholar 

  80. H. Talebi and P. Milanfar. Global image denoising. IEEE Transactions on Image Processing, 23(2):755–768, 2014.

    Article  MathSciNet  Google Scholar 

  81. M. F. Tappen, C. Liu, E. H. Adelson, and W. T. Freeman. Learning gaussian conditional random fields for low-level vision. In IEEE Conference on Computer Vision and Pattern Recognition, 2007.

    Google Scholar 

  82. R. Timofte. Anchored fusion for image restoration. In Pattern Recognition (ICPR), 2016 23rd International Conference on, pages 1412–1417. IEEE, 2016.

    Google Scholar 

  83. R. Timofte, S. Gu, J. Wu, and L. Van Gool. Ntire 2018 challenge on single image super-resolution: Methods and results. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018.

    Google Scholar 

  84. C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In IEEE International Conference on Computer Vision, 1998.

    Google Scholar 

  85. J. S. Turek, I. Yavneh, and M. Elad. On mmse and map denoising under sparse representation modeling over a unitary dictionary. IEEE Transactions on Signal Processing, 59(8):3526–3535, 2011.

    Article  MathSciNet  Google Scholar 

  86. S. Wang, L. Zhang, and Y. Liang. Nonlocal spectral prior model for low-level vision. In Asian Conference on Computer Vision, 2012.

    Google Scholar 

  87. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.

    Article  Google Scholar 

  88. Z. Wang and D. Zhang. Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 46(1):78–80, 1999.

    Article  Google Scholar 

  89. J. Weickert. Anisotropic diffusion in image processing, volume 1. 1998.

    Google Scholar 

  90. J. Xie, L. Xu, and E. Chen. Image denoising and inpainting with deep neural networks. In NIPS, 2012.

    Google Scholar 

  91. Q. Xie, Q. Zhao, D. Meng, Z. Xu, S. Gu, W. Zuo, and L. Zhang. Multispectral images denoising by intrinsic tensor sparsity regularization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1692–1700, 2016.

    Google Scholar 

  92. Y. Xie, S. Gu, Y. Liu, W. Zuo, W. Zhang, and L. Zhang. Weighted schatten p-norm minimization for image denoising and background subtraction. arXiv preprint arXiv:1512.01003, 2015.

    Google Scholar 

  93. J. Xu, L. Zhang, D. Zhang, and X. Feng. Multi-channel weighted nuclear norm minimization for real color image denoising. In Proceedings of the IEEE International Conference on Computer Vision, pages 1096–1104, 2017.

    Google Scholar 

  94. G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing, 21(5):2481–2499, 2012.

    Article  MathSciNet  Google Scholar 

  95. B. Zhang, J. M. Fadili, and J.-L. Starck. Wavelets, ridgelets, and curvelets for poisson noise removal. IEEE Transactions on Image Processing, 17(7):1093–1108, 2008.

    Article  MathSciNet  Google Scholar 

  96. D. Zhang, Y. Hu, J. Ye, X. Li, and X. He. Matrix completion by truncated nuclear norm regularization. In IEEE Conference on Computer Vision and Pattern Recognition, 2012.

    Google Scholar 

  97. K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Transactions on Image Processing, 2017.

    Google Scholar 

  98. L. Zhang, L. Zhang, X. Mou, D. Zhang, et al. Fsim: a feature similarity index for image quality assessment. IEEE transactions on Image Processing, 20(8):2378–2386, 2011.

    Article  MathSciNet  Google Scholar 

  99. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018.

    Google Scholar 

  100. Z. Zhang, A. Ganesh, X. Liang, and Y. Ma. Tilt: transform invariant low-rank textures. International Journal of Computer Vision, 99(1):1–24, 2012.

    Article  MathSciNet  Google Scholar 

  101. S. C. Zhu, Y. Wu, and D. Mumford. Filters, random fields and maximum entropy (frame): Towards a unified theory for texture modeling. International Journal of Computer Vision, 27(2):107–126, 1998.

    Article  Google Scholar 

  102. D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. In IEEE International Conference on Computer Vision (ICCV), 2011.

    Google Scholar 

  103. W. Zuo, D. Ren, S. Gu, L. Lin, and L. Zhang. Discriminative learning of iteration-wise priors for blind deconvolution. In IEEE Conference on Computer Vision and Pattern Recognition, 2015.

    Google Scholar 

  104. W. Zuo, L. Zhang, C. Song, and D. Zhang. Texture enhanced image denoising via gradient histogram preservation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1203–1210, 2013.

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the ETH General Fund, Huawei, and Nvidia through a hardware grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Timofte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, S., Timofte, R. (2019). A Brief Review of Image Denoising Algorithms and Beyond. In: Escalera, S., Ayache, S., Wan, J., Madadi, M., Güçlü, U., Baró, X. (eds) Inpainting and Denoising Challenges. The Springer Series on Challenges in Machine Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-25614-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25614-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25613-5

  • Online ISBN: 978-3-030-25614-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics