Skip to main content

The Therapeutic Potential of Ketogenic Diet Throughout Life: Focus on Metabolic, Neurodevelopmental and Neurodegenerative Disorders

  • Chapter
  • First Online:
Reviews on Biomarker Studies in Aging and Anti-Aging Research

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1178))

Abstract

This chapter reviews the efficacy of the ketogenic diet in a variety of neurodegenerative, neurodevelopmental and metabolic conditions throughout different stages of life. It describes conditions affecting children, metabolic disorders in adults and disorderrs affecting the elderly. We have focused on application of the ketogenic diet in clinical studies and in preclinical models and discuss the benefits and negative aspects of the diet. Finally, we highlight the need for further research in this area with a view of discovering novel mechanistic targets of the ketogenic diet, as a means of maximising the potential benefits/risks ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mattson MP, Longo VD, Harvie M (2017) Impact of intermittent fasting on health and disease processes. Ageing Res Rev 39:46–58

    Article  PubMed  Google Scholar 

  2. Guelpa G, Marie A (1911) La lutte contre l’epilepsie par ladesintoxication et par la re–education alimentaire. Revuede Therapie Medico-Chirurgide 78:8–13

    Google Scholar 

  3. Woodyatt R (1921) Objects and method of diet adjustment in diabetics. Arch Intern Med 28:125–141

    Article  CAS  Google Scholar 

  4. Wilder R (1921) The effect on ketonemia on the course of epilepsy. Mayo Clin Bull 2:307

    Google Scholar 

  5. Seyfried TN (2014) Ketone strong: emerging evidence for a therapeutic role of ketone bodies in neurological and neurodegenerative diseases. J Lipid Res 55(9):1815–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bough KJ, Rho JM (2007) Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 48(1):43–58

    Article  CAS  PubMed  Google Scholar 

  7. Paoli A, Rubini A, Volek JS, Grimaldi KA (2013) Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr 67(8):789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hartman AL, Gasior M, Vining EP, Rogawski MA (2007) The neuropharmacology of the ketogenic diet. Pediatr Neurol 36(5):281–292

    Article  PubMed  PubMed Central  Google Scholar 

  9. Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int 38(6):519–527

    Article  CAS  PubMed  Google Scholar 

  10. Noh HS, Lee HP, Kim DW, Kang SS, Cho GJ, Rho JM et al (2004) A cDNA microarray analysis of gene expression profiles in rat hippocampus following a ketogenic diet. Brain Res Mol Brain Res 129(1–2):80–87

    CAS  PubMed  Google Scholar 

  11. Seyfried TN, Mukherjee P (2005) Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (Lond) 2:30. https://doi.org/10.1186/1743-7075-2-30

    Article  CAS  Google Scholar 

  12. Stafstrom CE, Rho JM (2012) The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 3:59. https://doi.org/10.3389/fphar.2012.00059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kossoff EH, Huffman J, Turner Z, Gladstein J (2010) Use of the modified Atkins diet for adolescents with chronic daily headache. Cephalalgia 30(8):1014–1016

    CAS  PubMed  Google Scholar 

  14. Maggioni F, Margoni M, Zanchin G (2011) Ketogenic diet in migraine treatment: a brief but ancient history. Cephalalgia 31(10):1150–1151

    Article  PubMed  Google Scholar 

  15. Barañano KW, Hartman AL (2008) The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr Treat Options Neurol 10(6):410–419

    Article  PubMed  PubMed Central  Google Scholar 

  16. Taylor MK, Sullivan DK, Mahnken JD, Burns JM, Swerdlow RH (2018) Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimers Dement (N Y) 4:28–36

    Google Scholar 

  17. Vanitallie TB, Nonas C, Di Rocco A, Boyar K, Hyams K, Heymsfield SB (2005) Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study. Neurology 64(4):728–730

    Article  CAS  PubMed  Google Scholar 

  18. Phillips MCL, Murtagh DKJ, Gilbertson LJ, Asztely FJS, Lynch CDP (2018) Low-fat versus ketogenic diet in Parkinson’s disease: a pilot randomized controlled trial. Mov Disord 33(8):1306–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi IY, Piccio L, Childress P, Bollman B, Ghosh A, Brandhorst S (2016) A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep 15(10):2136–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Evangeliou A, Vlachonikolis I, Mihailidou H, Spilioti M, Skarpalezou A, Makaronas N et al (2003) Application of a ketogenic diet in children with autistic behavior: pilot study. J Child Neurol 18(2):113–118

    Article  PubMed  Google Scholar 

  21. Herbert MR, Buckley JA (2013) Autism and dietary therapy: case report and review of the literature. J Child Neurol 28(8):975–982

    Article  PubMed  Google Scholar 

  22. Lee RWY, Corley MJ, Pang A, Arakaki G, Abbott L, Nishimoto M et al (2018) A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder. Physiol Behav 188:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Żarnowska I, Chrapko B, Gwizda G, Nocuń A, Mitosek-Szewczyk K, Gasior M (2018) Therapeutic use of carbohydrate-restricted diets in an autistic child; a case report of clinical and 18FDG PET findings. Metab Brain Dis 33(4):1187–1192

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pulsifer MB, Gordon JM, Brandt J, Vining EP, Freeman JM (2001) Effects of ketogenic diet on development and behavior: preliminary report of a prospective study. Dev Med Child Neurol 43(5):301–306

    Article  CAS  PubMed  Google Scholar 

  25. Pacheco A, Easterling WS, Pryer MW (1965) A pilot study of the ketogenic diet in Schizophrenia. Am J Psychiatry 121:1110–1111

    Article  CAS  PubMed  Google Scholar 

  26. Kraft BD, Westmen EC (2009) Schizophrenia, gluten, and low-carbohydrate, ketogenic diets: a case report and review of the literature. Nutr Metab (Lond) 6:10. https://doi.org/10.1186/1743-7075-6-10

    Article  CAS  Google Scholar 

  27. Palmer CM (2017) Ketogenic diet in the treatment of schizoaffective disorder: two case studies. Schizophr Res 189:208–209

    Article  PubMed  Google Scholar 

  28. Gilbert-Jaramillo J, Vargas-Pico D, Espinosa-Mendoza T, Falk S, Llanos-Fernàndez K, Guerrero-Haro J et al (2018) The effects of the ketogenic diet on psychiatric symptomatology, weight and metabolic dysfunction in schizophrenia patients. Clin Nutr Metab 1(2). https://doi.org/10.15761/CNM.1000105

  29. Yaroslavsky Y, Stahl Z, Belmaker RH (2002) Ketogenic diet in bipolar illness. Bipolar Disord 4(1):75

    Article  PubMed  Google Scholar 

  30. Phelps JR, Siemers SV, El-Mallakh RS (2013) The ketogenic diet for type II bipolar disorder. Neurocase 19(5):423–426

    Article  PubMed  Google Scholar 

  31. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2197–2223

    Article  PubMed  Google Scholar 

  32. Cummings JL, Mega MS (2003) Neuropsychiatry and behavioral neuroscience. Oxford University Press, Cary, NC, USA. ISBN: 9780195138580

    Google Scholar 

  33. Peterman M (1925) The ketogenic diet in epilepsy. JAMA 84:1979–1983

    Article  Google Scholar 

  34. Lutas A, Yellen G (2013) The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci 36(1):32–40

    Article  CAS  PubMed  Google Scholar 

  35. Livingston S (1972) Dietary treatment of epilepsy. In: Livingston S (ed) Comprehensive management of epilepsy in infancy, childhood and adolescence. Charles C. Thomas, Springfield, pp 378–405. ASIN: B0006C2W3U

    Google Scholar 

  36. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342(5):314–319

    Article  CAS  PubMed  Google Scholar 

  37. Rho JM (2015) How does the ketogenic diet induce anti-seizure effects? Neurosci Lett 637:4–10

    Article  CAS  PubMed  Google Scholar 

  38. Youngson NA, Morris MJ, Ballard JWO (2017) The mechanisms mediating the antiepileptic effects of the ketogenic diet, and potential opportunities for improvement with metabolism-altering drugs. Seizure 52:15–19

    Article  PubMed  Google Scholar 

  39. McDonald TJW, Cervenka MC (2018) The expanding role of ketogenic diets in adult neurological disorders. Brain Sci 8(8). pii: E148. https://doi.org/10.3390/brainsci8080148

    Article  PubMed Central  Google Scholar 

  40. van Berkel AA, IJff DM, Verkuyl JM (2018) Cognitive benefits of the ketogenic diet in patients with epilepsy: a systematic overview. Epilepsy Behav 87:69–77

    Article  PubMed  Google Scholar 

  41. Guzel O, Uysal U, Arslan N (2019) Efficacy and tolerability of olive oil-based ketogenic diet in children with drug-resistant epilepsy: a single center experience from Turkey. Eur J Paediatr Neurol 23(1):143–151

    Article  PubMed  Google Scholar 

  42. Lindefeldt M, Eng A, Darban H, Bjerkner A, Zetterström CK, Allander T et al (2019) The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes 5:5. https://doi.org/10.1038/s41522-018-0073-2

    Article  PubMed  PubMed Central  Google Scholar 

  43. Carroll J, Martin-McGill K, Cross H, Hickson M, Collinson A (2019) Outcome measurement and reporting in childhood epilepsy treated with ketogenic diet therapy: a scoping review protocol. JBI Database System Rev Implement Rep. https://doi.org/10.11124/JBISRIR-2017-003924. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  44. Howard AL, Robinson M, Smith GJ, Ambrosini GL, Piek JP, Oddy WH (2011) ADHD is associated with a "Western" dietary pattern in adolescents. J Atten Disord 15(5):403–411

    Article  PubMed  Google Scholar 

  45. Thapar A, Cooper M (2016) Attention deficit hyperactivity disorder. Lancet 387(10024):1240–1250

    Article  PubMed  Google Scholar 

  46. Dutra TG, Baltar A, Monte-Silva KK (2016) Motor cortex excitability in attention-deficit hyperactivity disorder (ADHD): a systematic review and meta-analysis. Res Dev Disabil 56:1–9

    Article  CAS  PubMed  Google Scholar 

  47. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164(6):942–948

    Article  PubMed  Google Scholar 

  48. Wilens TE, Biederman J, Spencer TJ (2002) Attention deficit/hyperactivity disorder across the lifespan. Annu Rev Med 53:113–131

    Article  CAS  PubMed  Google Scholar 

  49. Moriyama TS, Polanczyk GV, Terzi FS, Faria KM, Rohde LA (2013) Psychopharmacology and psychotherapy for the treatment of adults with ADHD-a systematic review of available meta-analyses. CNS Spectr 18(6):296–306

    Article  PubMed  Google Scholar 

  50. Murphy P, Likhodii SS, Hatamian M, McIntyre Burnham W (2005) Effect of the ketogenic diet on the activity level of Wistar rats. Pediatr Res 57(3):353–357

    Article  CAS  PubMed  Google Scholar 

  51. Murphy P, Burnham WM (2006) The ketogenic diet causes a reversible decrease in activity level in long-Evans rats. Exp Neurol 201(1):84–89

    Article  CAS  PubMed  Google Scholar 

  52. Packer RM, Law TH, Davies E, Zanghi B, Pan Y, Volk HA (2016) Effects of a ketogenic diet on ADHD-like behavior in dogs with idiopathic epilepsy. Epilepsy Behav 55:62–68

    Article  PubMed  Google Scholar 

  53. Hampson DR, Blatt GJ (2015) Autism spectrum disorders and neuropathology of the cerebellum. Front Neurosci 9:420. https://doi.org/10.3389/fnins.2015.00420

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fuccillo MV (2016) Striatal circuits as a common node for autism pathophysiology. Front Neurosci 10:27. https://doi.org/10.3389/fnins.2016.00027

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li Q, Zhou JM (2016) The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience 324:131–139

    Article  CAS  PubMed  Google Scholar 

  56. Vogel Ciernia A, LaSalle J (2016) The landscape of DNA methylation amid a perfect storm of autism aetiologies. Nat Rev Neurosci 17(7):411–423

    Article  CAS  PubMed  Google Scholar 

  57. Kern JK, Geier DA, Sykes LK, Geier MR (2015) Relevance of neuroinflammation and encephalitis in autism. Front Cell Neurosci 9:519. https://doi.org/10.3389/fncel.2015.00519

    Article  CAS  PubMed  Google Scholar 

  58. Anagnostou E, Soorya L, Brian J, Dupuis A, Mankad D, Smile S et al (2014) Intranasal oxytocin in the treatment of autism spectrum disorders: a review of literature and early safety and efficacy data in youth. Brain Res 1580:188–198

    Article  CAS  PubMed  Google Scholar 

  59. Ruskin DN, Svedova J, Cote JL, Sandau U, Rho JM, Kawamura M Jr et al (2013) Ketogenic diet improves core symptoms of autism in BTBR mice. PLoS One 8:e65021. https://doi.org/10.1371/journal.pone.0065021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ahn Y, Narous M, Tobias R, Rho JM, Mychasiuk R (2014) The ketogenic diet modifies social and metabolic alterations identified in the prenatal valproic acid model of autism spectrum disorder. Dev Neurosci 36(5):371–380

    Article  CAS  PubMed  Google Scholar 

  61. Verpeut JL, DiCicco-Bloom E, Bello NT (2016) Ketogenic diet exposure during the juvenile period increases social behaviors and forebrain neural activation in adult Engrailed 2 null mice. Physiol Behav 161:90–98

    Article  CAS  PubMed  Google Scholar 

  62. Castro K, Baronio D, Perry IS, Riesgo RDS, Gottfried C (2017) The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid. Nutr Neurosci 20(6):343–350

    Article  CAS  PubMed  Google Scholar 

  63. Ruskin DN, Fortin JA, Bisnauth SN, Masino SA (2017) Ketogenic diets improve behaviors associated with autism spectrum disorder in a sex-specific manner in the EL mouse. Physiol Behav 168:138–145

    Article  CAS  PubMed  Google Scholar 

  64. Ruskin DN, Murphy MI, Slade SL, Masino SA (2017) Ketogenic diet improves behaviors in a maternal immune activation model of autism spectrum disorder. PLoS One 12:e0171643. https://doi.org/10.1371/journal.pone.0171643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mychasiuk R, Rho JM (2017) Genetic modifications associated with ketogenic diet treatment in the BTBR(T+Tf/J) mouse model of autism spectrum disorder. Autism Res 10(3):456–471

    Article  PubMed  Google Scholar 

  66. Newell C, Bomhof MR, Reimer RA, Hittel DS, Rho JM, Shearer J (2016) Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol Autism 7(1):37. https://doi.org/10.1186/s13229-016-0099-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. El-Rashidy O, El-Baz F, El-Gendy Y, Khalaf R, Reda D, Saad K (2017) Ketogenic diet versus gluten free casein free diet in autistic children: a case-control study. Metab Brain Dis 32(6):1935–1941

    Article  CAS  PubMed  Google Scholar 

  68. Bowden NA, Weidenhofer J, Scott RJ, Schall U, Todd J, Michie PT et al (2006) Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophr Res 82(2–3):175–183

    Article  PubMed  Google Scholar 

  69. Zipursky RB, Reilly TJ, Murray RM (2013) The myth of schizophrenia as a progressive brain disease. Schizophr Bull 39(6):1363–1372

    Article  PubMed  Google Scholar 

  70. Evensen S, Wisløff T, Lystad JU, Bull H, Ueland T, Falkum E (2016) Prevalence, employment rate, and cost of Schizophrenia in a High-Income Welfare Society: a population-based study using comprehensive health and welfare registers. Schizophr Bull 42(2):476–483

    Article  PubMed  Google Scholar 

  71. Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia. Lancet 388(10039):86–97

    Article  PubMed  PubMed Central  Google Scholar 

  72. https://www.who.int/mental_health/management/schizophrenia/en/

  73. Andreasen N (1995) Symptoms, signs, and diagnosis of schizophrenia. Lancet 346(8973):477–481

    Article  CAS  PubMed  Google Scholar 

  74. Tandon R, Keshavan MS, Nasrallah HA (2008) Schizophrenia, “Just the Facts”: what we know in 2008 part 1: overview. Schizophr Res 100(1–3):4–19

    Article  PubMed  Google Scholar 

  75. van Os J, Kapur S (2009) Schizophrenia. Lancet 374(9690):635–645

    Article  CAS  PubMed  Google Scholar 

  76. Palmer B, Pankratz V, Bostwick J (2005) The lifetime risk of suicide in schizophrenia: a reexamination. Arch Gen Psychiatry 62(3):247–253

    Article  PubMed  Google Scholar 

  77. Keltner N, Grant J (2006) Smoke, smoke, smoke that cigarette. Perspect Psychiatr Care 42(4):256–261

    Article  PubMed  Google Scholar 

  78. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2095–2128

    Article  PubMed  Google Scholar 

  79. van Rossum JM (1966) The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther 160(2):492–494

    PubMed  Google Scholar 

  80. Seeman P, Niznik HB (1990) Dopmine receptors and transporters in Parkinson’s disease and schizophrenia. FASEB J 4(10):2737–2744

    Article  CAS  PubMed  Google Scholar 

  81. Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J et al (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93(17):9235–9240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Seeman P, Kapur S (2000) Schizophrenia: more dopamine, more D2 receptors. Proc Natl Acad Sci U S A 97(14):7673–7675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Toda M, Abi-Dargham A (2007) Dopamine hypothesis of schizophrenia: making sense of it all. Curr Psychiatry Rep 9(4):329–336

    Article  PubMed  Google Scholar 

  84. Frohlich J, Horn JD (2014) Reviewing the ketamine model for schizophrenia. J Psychopharmacol 28(4):287–302

    Article  CAS  PubMed  Google Scholar 

  85. Craddock N, O’Donovan MC, Owen MJ (2005) The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet 42(3):193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10(1):40–68; image 5

    Article  CAS  PubMed  Google Scholar 

  87. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901

    Article  CAS  PubMed  Google Scholar 

  88. Kann O (2016) The interneuron energy hypothesis: implications for brain disease. Neurobiol Dis 90:75–85

    Article  CAS  PubMed  Google Scholar 

  89. Pillinger T, Beck K, Gobjila C, Donocik JG, Jauhar S, Howes OD (2017) Impaired glucose homeostasis in first-episode Schizophrenia: a systematic review and meta-analysis. JAMA Psychiat 74(3):261–269

    Article  Google Scholar 

  90. Steiner J, Berger M, Guest PC, Dobrowolny H, Westphal S, Schiltz K (2017) Assessment of insulin resistance among drug-naive patients with first-episode Schizophrenia in the context of hormonal stress axis activation. JAMA Psychiat 74(9):968–970

    Article  Google Scholar 

  91. Sullivan CR, O’Donovan SM, McCullumsmith RE, Ramsey A (2018) Defects in bioenergetic coupling in Schizophrenia. Biol Psychiatry 83(9):739–750

    Article  CAS  PubMed  Google Scholar 

  92. Chouinard VA, Henderson DC, Dalla Man C, Valeri L, Gray BE, Ryan KP et al (2018) Impaired insulin signaling in unaffected siblings and patients with first-episode psychosis. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0045-1. [Epub ahead of print]

  93. Dwyer DS, Bradley RJ, Kablinger AS, Freeman AM 3rd (2001) Glucose metabolism in relation to schizophrenia and antipsychotic drug treatment. Ann Clin Psychiatry 13(2):103–113

    Article  CAS  PubMed  Google Scholar 

  94. Fujimoto T, Takeuch K, Matsumoto T, Kamimura K, Hamada R, Nakamura K et al (2007) Abnormal glucose metabolism in the anterior cingulate cortex in patients with schizophrenia. Psychiatry Res 154(1):49–58

    Article  CAS  PubMed  Google Scholar 

  95. Krivoy A, Fischel T, Weizman A (2008) The possible involvement of metabotropic glutamate receptors in schizophrenia. Eur Neuropsychopharmacol 18(6):395–405

    Article  CAS  PubMed  Google Scholar 

  96. Beasley CL, Dwork AJ, Rosoklija G, Mann JJ, Mancevski B, Jakovski Z et al (2009) Metabolic abnormalities in fronto-striatal-thalamic white matter tracts in schizophrenia. Schizophr Res 109(1–3):159–166

    Article  PubMed  PubMed Central  Google Scholar 

  97. Harris LW, Guest PC, Wayland MT, Umrania Y, Krishnamurthy D, Rahmoune H et al (2013) Schizophrenia: metabolic aspects of aetiology, diagnosis and future treatment strategies. Psychoneuroendocrinology 38(6):752–766

    Article  CAS  PubMed  Google Scholar 

  98. Sullivan CR, Koene RH, Hasselfeld K, O’Donovan SM, Ramsey A, McCullumsmith RE (2018) Neuron-specific deficits of bioenergetic processes in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0035-3. [Epub ahead of print]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kraeuter AK, Loxton H, Lima BC, Rudd D, Sarnyai Z (2015) Ketogenic diet reverses behavioral abnormalities in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr Res 169(1–3):491–493

    Article  PubMed  Google Scholar 

  100. Kraeuter AK, van den Buuse M, Sarnyai Z 2018. Ketogenic diet prevents impaired prepulse inhibition of startle in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr Res. pii: S0920–9964(18)30662–5. https://doi.org/10.1016/j.schres.2018.11.011. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  101. Tregellas JR, Smucny J, Legget KT, Stevens KE (2015) Effects of a ketogenic diet on auditory gating in DBA/2 mice: a proof-of-concept study. Schizophr Res 169(1–3):351–354

    Article  PubMed  PubMed Central  Google Scholar 

  102. Dohan FC (1966) Cereals and schizophrenia data and hypothesis. Acta Psychiatr Scand 42(2):125–152

    Article  CAS  PubMed  Google Scholar 

  103. Kalaydjian AE, Eaton W, Cascella N, Fasano A (2006) The gluten connection: the association between schizophrenia and celiac disease. Acta Psychiatr Scand 113(2):82–90

    Article  CAS  PubMed  Google Scholar 

  104. Chen L, Magliano DJ, Zimmet PZ (2012) The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 8(4):228–236

    Article  CAS  Google Scholar 

  105. Dyson P (2014) Popular diets: are they effective for people with type 2 diabetes? Pract Diabetes 31:187–192

    Article  Google Scholar 

  106. Reilly JJ, Methven E, McDowell ZC, Hacking B, Alexander D, Stewart L et al (2003) Health consequences of obesity. Arch Dis Child 88(9):748–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. https://www.idf.org/

  108. Haslam DW, James WP (2005) Obesity. Lancet 366(9492):1197–1209

    Article  PubMed  Google Scholar 

  109. Esposito K, Giugliano F, Di Palo C, Giugliano G, Marfella R, D’Andrea F et al (2004) Effect of lifestyle changes on erectile dysfunction in obese men: a randomized controlled trial. JAMA 291(24):2978–2984

    Article  CAS  PubMed  Google Scholar 

  110. Green BB, Weiss NS, Daling JR (1988) Risk of ovulatory infertility in relation to body weight. Fertil Steril 50(5):721–726

    Article  CAS  PubMed  Google Scholar 

  111. Peeters A, Barendregt JJ, Willekens F, Mackenbach JP, Al Mamun A, Bonneux L et al (2003) Obesity in adulthood and its consequences for life expectancy: a life-table analysis. Ann Intern Med 138(1):24–32

    Article  PubMed  Google Scholar 

  112. Ludwig DS, Willett WC, Volek JS, Neuhouser ML (2018) Dietary fat: from foe to friend? Science 362(6416):764–770

    Article  CAS  PubMed  Google Scholar 

  113. Yancy WS Jr, Olsen MK, Guyton JR, Bakst RP, Westman EC (2004) A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann Intern Med 140(10):768–777

    Article  Google Scholar 

  114. Ludwig DS (2016) Lifespan weighed down by diet. JAMA 315(21):2269–2270

    Article  CAS  PubMed  Google Scholar 

  115. Austin GL, Ogden LG, Hill JO (2011) Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals: 1971-2006. Am J Clin Nutr 93(4):836–843

    Article  CAS  PubMed  Google Scholar 

  116. Dehghan M, Mente A, Zhang X, Swaminathan S, Li W, Mohan V et al (2017) Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet 390(10107):2050–2062

    Article  CAS  PubMed  Google Scholar 

  117. Gibson AA, Seimon RV, Lee CM, Ayre J, Franklin J, Markovic TP et al (2015) Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obes Rev 16(1):64–76

    Article  CAS  PubMed  Google Scholar 

  118. Tinsley GM, Willoughby DS (2016) Fat-free mass changes during ketogenic diets and the potential role of resistance training. Int J Sport Nutr Exerc Metab 26(1):78–92

    Article  CAS  PubMed  Google Scholar 

  119. Roberts MN, Wallace MA, Tomilov AA, Zhou Z, Marcotte GR, Tran D et al (2017) A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab 26(3):539–546.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mohorko N, Černelič-Bizjak M, Poklar-Vatovec T, Grom G, Kenig S, Petelin A et al (2019) Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. Nutr Res 62:64–77

    Article  CAS  PubMed  Google Scholar 

  121. Genco A, Ienca R, Ernesti I, Maselli R, Casella G, Bresciani S (2018) Improving weight loss by combination of two temporary antiobesity treatments. Obes Surg 28(12):3733–3737

    Article  PubMed  Google Scholar 

  122. Castro AI, Gomez-Arbelaez D, Crujeiras AB, Granero R, Aguera Z, Jimenez-Murcia S et al (2018) Effect of a very low-calorie ketogenic diet on food and alcohol cravings, physical and sexual activity, sleep disturbances, and quality of life in obese patients. Nutrients 10(10). pii: E1348. https://doi.org/10.3390/nu10101348

    Article  CAS  PubMed Central  Google Scholar 

  123. Feinman RD, Pogozelski WK, Astrup A, Bernstein RK, Fine EJ, Westman EC (2015) Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition 31(1):1–13

    Article  CAS  PubMed  Google Scholar 

  124. Lindenmayer JP, Czobor P, Volavka J, Citrome L, Sheitman B, McEvoy JP et al (2003) Changes in glucose and cholesterol levels in patients with Schizophrenia treated with typical or atypical antipsychotics. Am J Psychiatry 160(2):290–296

    Article  PubMed  Google Scholar 

  125. Modan M, Halkin H, Almog S, Lusky A, Eshkol A, Shefi M et al (1985) Hyperinsulinemia: a link between hypertension obesity and glucose intolerance. J Clin Invest 75(3):809–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thio LL, Erbayat-Altay E, Rensing N, Yamada KA (2006) Leptin contributes to slower weight gain in Juvenile Rodents on a ketogenic diet. Pediatr Res 60(4):413–417

    Article  CAS  PubMed  Google Scholar 

  127. Douris N, Melman T, Pecherer JM, Pissios P, Flier JS, Cantley LC et al (2015) Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochim Biophys Acta 1852(10 Pt A):2056–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kennedy AR, Pissios P, Otu H, Roberson R, Xue B, Asakura K et al (2007) A high-fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab 292(6):E1724–E1739

    Article  CAS  PubMed  Google Scholar 

  129. Badman MK, Kennedy AR, Adams AC, Pissios P, Maratos-Flier E (2009) A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss. Am J Physiol Endocrinol Metab 2215(5):1197–1204

    Article  CAS  Google Scholar 

  130. Jornayvaz FR, Jurczak MJ, Lee HY, Birkenfeld AL, Frederick DW, Zhang D et al (2010) A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. Am J Physiol Endocrinol Metab 299(5):E808–E815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Garbow JR, Doherty JM, Schugar RC, Travers S, Weber ML, Wentz AE et al (2011) Hepatic steatosis, inflammation, and ER stress in mice maintained long term on a very low-carbohydrate ketogenic diet. Am J Physiol Gastrointest Liver Physiol 300(6):956–967

    Article  CAS  Google Scholar 

  132. Yancy WS Jr, Foy M, Chalecki AM, Vernon MC, Westman EC (2005) A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutr Metab (Lond) 2:34. https://doi.org/10.1186/1743-7075-2-34

    Article  CAS  Google Scholar 

  133. Rustad JK, Musselman DL, Nemeroff CB (2011) The relationship of depression and diabetes: pathophysiological and treatment implications. Psychoneuroendocrinology 36(9):1276–1286

    Article  PubMed  Google Scholar 

  134. Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD et al (1989) High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79(1):8–15

    Article  CAS  PubMed  Google Scholar 

  135. Dashti HM, Mathew TC, Hussein T, Asfar SK, Behbahani A, Khoursheed MA et al (2004) Long-term effects of a ketogenic diet in obese patients. Exp Clin Cardiol 9(3):200–205

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Zirlik S, Hauck T, Fuchs FS, Neurath MF, Konturek PC, Harsch IA (2011) Leptin, Obestatin and Apelin levels in patients with obstructive sleep apnoea syndrome. Med Sci Monit 17(3):CR159–164

    Article  Google Scholar 

  137. Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A et al (2013) Ketosis and appetite-mediating nutrients and hormones after weight loss. Eur J Clin Nutr 67(7):759–764

    Article  CAS  PubMed  Google Scholar 

  138. Gaiteri C, Mostafavi S, Honey CJ, De Jager PL, Bennett DA (2016) Genetic variants in Alzheimer disease - molecular and brain network approaches. Nat Rev Neurol 12(7):413–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf

  140. Cuyvers E, Sleegers K (2016) Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol 15(8):857–868

    Article  CAS  PubMed  Google Scholar 

  141. Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351(1):56–67

    Article  CAS  PubMed  Google Scholar 

  142. Van der Auwera I, Wera S, Van Leuven F, Henderson ST (2005) A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr Metab (Lond) 2:28. https://doi.org/10.1186/1743-7075-2-28

    Article  CAS  Google Scholar 

  143. Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219(4589):1184–1190

    Article  CAS  PubMed  Google Scholar 

  144. Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev:CD005593. https://doi.org/10.1002/14651858.CD005593

  145. Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 61(5):661–666

    Article  PubMed  Google Scholar 

  146. Ferreira LSS, Fernandes CS, Vieira MNN, De Felice FG (2018) Insulin resistance in Alzheimer’s disease. Front Neurosci 12:830. https://doi.org/10.3389/fnins.2018.00830

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chesneau V, Vekrellis K, Rosner MR, Selkoe DJ (2000) Purified recombinant insulin-degrading enzyme degrades amyloid β-protein but does not promote its oligomerization. Biochem J 351(Pt 2):509–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Beckett TL, Studzinski CM, Keller JN, Paul Murphy M, Niedowicz DM (2013) A ketogenic diet improves motor performance but does not affect beta-amyloid levels in a mouse model of Alzheimer’s disease. Brain Res 1505:61–67

    Article  CAS  PubMed  Google Scholar 

  149. Brownlow ML, Benner L, D’Agostino D, Gordon MN, Morgan D (2013) Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer’s pathology. PLoS One 8:e75713. https://doi.org/10.1371/journal.pone.0075713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kashiwaya Y, Bergman C, Lee JH, Wan R, King MT, Mughal MR et al (2013) A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol Aging 34(6):1530–1539

    Article  CAS  PubMed  Google Scholar 

  151. Pawlosky RJ, Kemper MF, Kashiwaya Y, King MT, Mattson MP, Veech RL (2017) Effects of a dietary ketone ester on hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer’s disease. J Neurochem 141(2):195–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yin JX, Maalouf M, Han P, Zhao M, Gao M, Dharshaun T et al (2016) Ketones block amyloid entry and improve cognition in an Alzheimer’s model. Neurobiol Aging 39:25–37

    Article  CAS  PubMed  Google Scholar 

  153. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N et al (2003) Dietary fats and the risk of incident Alzheimer disease. Arch Neurol 60(2):94–200

    Article  Google Scholar 

  154. Krikorian R, Shidler MD, Dangelo K, Couch SC, Benoit SC, Clegg DJ (2012) Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol Aging 33(2):425.e19-27. https://doi.org/10.1016/j.neurobiolaging.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  155. Witte AV, Fobker M, Gellner R, Knecht S, Flöel A (2009) Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A 106(4):1255–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Newport MT, VanItallie TB, Kashiwaya Y, King MT, Veech RL (2015) A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzheimers Dement 11(1):99–103

    Article  PubMed  Google Scholar 

  157. Morrill SJ, Gibas KJ (2019) Ketogenic diet rescues cognition in ApoE4+ patient with mild Alzheimer’s disease: a case study. Diabetes Metab Syndr Clin Res Rev 13:1187–1191

    Article  Google Scholar 

  158. Dzamko N, Geczy CL, Halliday GM (2015) Inflammation is genetically implicated in Parkinson’s disease. Neuroscience 302:89–102

    Article  CAS  PubMed  Google Scholar 

  159. Kalia LV, Lang AE (2016) Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol 12(2):65–66

    Article  CAS  PubMed  Google Scholar 

  160. Zhu B, Caldwell M, Song B (2016) Development of stem cell-based therapies for Parkinson’s disease. Int J Neurosci 126(11):955–962

    Article  CAS  PubMed  Google Scholar 

  161. de Lau LM, Bornebroek M, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM (2005) Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology 64(12):2040–2045

    Article  CAS  PubMed  Google Scholar 

  162. http://www.parkinsonsnsw.org.au/wp-content/uploads/2015/03/AE-Report_2011.pdf

  163. Murakami K, Miyake Y, Sasaki S, Tanaka K, Fukushima W, Kiyohara C et al (2010) Dietary glycemic index is inversely associated with the risk of Parkinson’s disease: a case-control study in Japan. Nutrition 26(5):515–521

    Article  CAS  PubMed  Google Scholar 

  164. McKeown MJ, Peavy GM (2015) Biomarkers in Parkinson disease: It’s time to combine. Neurology 84(24):2392–2393

    Article  PubMed  Google Scholar 

  165. Yang X, Cheng B (2010) Neuroprotective and anti-inflammatory activities of ketogenic diet on MPTP-induced neurotoxicity. J Mol Neurosci 42(2):145–153

    Article  CAS  PubMed  Google Scholar 

  166. Shaafi S, Najmi S, Aliasgharpour H, Mahmoudi J, Sadigh-Etemad S, Farhoudi M et al (2016) The efficacy of the ketogenic diet on motor functions in Parkinson’s disease: a rat model. Iran J Neurol 15(2):63–69

    PubMed  PubMed Central  Google Scholar 

  167. Tieu K, Perier C, Caspersen C, Teismann P, Wu DC, Yan SD et al (2003) D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 112(6):892–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cheng B, Yang X, An L, Gao B, Liu X, Liu S (2009) Ketogenic diet protects dopaminergic neurons against 6-OHDA neurotoxicity via up-regulating glutathione in a rat model of Parkinson’s disease. Brain Res 1286:25–31

    Article  CAS  PubMed  Google Scholar 

  169. Elbarbry F, Nguyen V, Mirka A, Zwickey H, Rosenbaum R (2019) A new validated HPLC method for the determination of levodopa: application to study the impact of ketogenic diet on the pharmacokinetics of levodopa in Parkinson’s participants. Biomed Chromatogr 33(1):e4382. https://doi.org/10.1002/bmc.4382

    Article  CAS  PubMed  Google Scholar 

  170. Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G et al (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7(6):500–506

    Article  PubMed  Google Scholar 

  171. Kang HC, Chung DE, Kim DW, Kim HD (2004) Early- and late-onset complications of the ketogenic diet for intractable epilepsy. Epilepsia 45(9):1116–1123

    Article  PubMed  Google Scholar 

  172. Wheless JW (2001) The ketogenic diet: an effective medical therapy with side effects. J Child Neurol 6(9):633–635

    Article  Google Scholar 

  173. Pietzak MM, Thomas DW (2000) Pancreatitis in childhood. Pediatr Rev 21(12):406–412

    Article  CAS  PubMed  Google Scholar 

  174. Wheless JW (2009) The Ketogenic diet: an effective medical therapy with side effects. J Child Neurol 16(9):633–635

    Article  Google Scholar 

  175. Rogovik AL, Goldman RD (2010) Ketogenic diet for treatment of epilepsy. Can Fam Physician 56(6):540–542

    PubMed  PubMed Central  Google Scholar 

  176. Nordli DR Jr, Kuroda MM, Carroll J, Koenigsberger DY, Hirsch LJ, Bruner HJ et al (2001) Experience with the ketogenic diet in infants. Pediatrics 108(1):129–133

    Article  PubMed  Google Scholar 

  177. Herzberg GZ, Fivush BA, Kinsman SL, Gearhart JP (1990) Urolithiasis associated with the ketogenic diet. J Pediatr 117(5):743–745

    Article  CAS  PubMed  Google Scholar 

  178. Furth SL, Casey JC, Pyzik PL, Neu AM, Docimo SG, Vining EP et al (2000) Risk factors for urolithiasis in children on the ketogenic diet. Pediatr Nephrol 15(1–2):125–128

    Article  CAS  PubMed  Google Scholar 

  179. Kinsman SL, Vining EP, Quaskey SA, Mellits D, Freeman JM (1992) Efficacy of the ketogenic diet for intractable seizure disorders: review of 58 cases. Epilepsia 33(6):1132–1136

    Article  CAS  PubMed  Google Scholar 

  180. Freeman JM, Vining EP, Pillas DJ, Pyzik PL, Casey JC, Kelly LM (1998) The efficacy of the ketogenic diet-1998: a prospective evaluation of intervention in 150 children. Pediatrics 102(6):1358–1363

    Article  CAS  PubMed  Google Scholar 

  181. Stewart WA, Gordon K, Camfield P (2001) Acute pancreatitis causing death in a child on the ketogenic diet. J Child Neurol 16(9):682. https://doi.org/10.1177/088307380101600910

    Article  CAS  PubMed  Google Scholar 

  182. Güntner AT, Kompalla JF, Landis H, Theodore SJ, Geidl B, Sievi NA et al (2018) Guiding ketogenic diet with breath acetone sensors. Sensors (Basel) 18(11). pii: E3655. https://doi.org/10.3390/s18113655

    Article  CAS  PubMed Central  Google Scholar 

  183. McDonald TJW, Cervenka MC (2018) Ketogenic diets for adult neurological disorders. Neurotherapeutics 15(4):1018–1031

    Article  PubMed  PubMed Central  Google Scholar 

  184. Park EG, Lee J, Lee J (2019) The ketogenic diet for super-refractory status epilepticus patients in intensive care units. Brain Dev. pii: S0387–7604(18)30173–6. https://doi.org/10.1016/j.braindev.2018.12.007. [Epub ahead of print]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Sarnyai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kraeuter, AK., Guest, P.C., Sarnyai, Z. (2019). The Therapeutic Potential of Ketogenic Diet Throughout Life: Focus on Metabolic, Neurodevelopmental and Neurodegenerative Disorders. In: Guest, P. (eds) Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology(), vol 1178. Springer, Cham. https://doi.org/10.1007/978-3-030-25650-0_5

Download citation

Publish with us

Policies and ethics