Skip to main content

The Next Frontier of Imaging in Ophthalmology: Machine Learning and Tissue Biomechanics

  • Chapter
  • First Online:
Ocular Fluid Dynamics

Abstract

Medical imaging has revolutionized the diagnosis and management of disease in healthcare. Early integration of computers into medical imaging brought control of devices and data acquisition to new heights of precision. As computing power and sophistication of software evolve, we have reached an era of computer-based image interpretation. Machine learning approaches have been developed to automate certain quantitative measures derived from these modalities. Prospects for machine learning in ophthalmology address its potential role in approaching some of the most common causes of blindness worldwide: diabetic retinopathy, glaucoma, and age-related macular degeneration. As these analysis techniques evolve, concurrent advancements are seen in ophthalmology imaging technologies themselves, and today, the aqueous outflow tract and the optic nerve head can be visualized in more detail than ever before. The optimization and assimilation of these tools may hold clinically significant answers to screening, diagnosing, and managing disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In discussing this process with radiology residents, I’ve been told that at some point in the second year of training, something clicks; a veil is lifted from their eyes, and they become aware of the vast hidden features contained in an X-ray.

  2. 2.

    In the case of MRI, some cleaver finagling is performed with magnetic fields prior to the presentation of the EMP, which is beyond the scope of this discussion.

References

  1. Gladwell, M., Blink: The power of thinking without thinking. 2005, New York: Little, Brown and Co.

    Google Scholar 

  2. Kononenko, I., Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med, 2001. 23(1): p. 89-109.

    Google Scholar 

  3. Sajda, P., Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng, 2006. 8: p. 537-65.

    Article  Google Scholar 

  4. Torok, Z., et al., Combined Methods for Diabetic Retinopathy Screening, Using Retina Photographs and Tear Fluid Proteomics Biomarkers. J Diabetes Res, 2015. 2015: p. 623619.

    Google Scholar 

  5. Gargeya, R. and T. Leng, Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology, 2017. 124(7): p. 962-969.

    Article  Google Scholar 

  6. Balaratnasingam, C., et al., Visual Acuity Is Correlated with the Area of the Foveal Avascular Zone in Diabetic Retinopathy and Retinal Vein Occlusion. Ophthalmology, 2016. 123(11): p. 2352-2367.

    Article  Google Scholar 

  7. Hwang, T.S., et al., Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy. JAMA Ophthalmol, 2016. 134(4): p. 367-73.

    Google Scholar 

  8. Linderman, R., et al., Assessing the Accuracy of Foveal Avascular Zone Measurements Using Optical Coherence Tomography Angiography: Segmentation and Scaling. Transl Vis Sci Technol, 2017. 6(3): p. 16.

    Google Scholar 

  9. Tan, C.S., et al., Optical Coherence Tomography Angiography Evaluation of the Parafoveal Vasculature and Its Relationship With Ocular Factors. Invest Ophthalmol Vis Sci, 2016. 57(9): p. Oct224-34.

    Article  Google Scholar 

  10. Tang, F.Y., et al., Determinants of Quantitative Optical Coherence Tomography Angiography Metrics in Patients with Diabetes. Sci Rep, 2017. 7(1): p. 2575.

    Google Scholar 

  11. Khansari, M.M., et al., Automated fine structure image analysis method for discrimination of diabetic retinopathy stage using conjunctival microvasculature images. Biomed Opt Express, 2016. 7(7): p. 2597-606.

    Article  Google Scholar 

  12. Bowd, C. and M.H. Goldbaum, Machine learning classifiers in glaucoma. Optom Vis Sci, 2008. 85(6): p. 396-405.

    Article  Google Scholar 

  13. Bowd, C., et al., Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. Invest Ophthalmol Vis Sci, 2008. 49(3): p. 945-53.

    Google Scholar 

  14. Asaoka, R., et al., Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier. Ophthalmology, 2016. 123(9): p. 1974-80.

    Google Scholar 

  15. Chen, X., Yanwu, X., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J., Automatic feature learning for glaucoma detection based on deep learning, in International Conference on Medical Image Computing and Computer Assisted Intervention --- MICCAI 2015, N. Navab, Hornegger, J., Wells, W. M., and A.F. Frangi, Editors. 2015, Springer International Publishing: Munich, Germany. p. 669–677.

    Google Scholar 

  16. Goldbaum, M.H., et al., Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci, 2002. 43(1): p. 162-9.

    Google Scholar 

  17. Bizios, D., et al., Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT. Acta Ophthalmol, 2010. 88(1): p. 44-52.

    Google Scholar 

  18. Barella, K.A., et al., Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT. J Ophthalmol, 2013. 2013: p. 789129.

    Google Scholar 

  19. Kim, S.J., K.J. Cho, and S. Oh, Development of machine learning models for diagnosis of glaucoma. PLoS One, 2017. 12(5): p. e0177726.

    Article  Google Scholar 

  20. Zilly, J., J.M. Buhmann, and D. Mahapatra, Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph, 2017. 55: p. 28-41.

    Article  Google Scholar 

  21. Miri, M.S., et al., A machine-learning graph-based approach for 3D segmentation of Bruch’s membrane opening from glaucomatous SD-OCT volumes. Med Image Anal, 2017. 39: p. 206-217.

    Google Scholar 

  22. Chauhan, B.C., et al., Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology, 2013. 120(3): p. 535-43.

    Google Scholar 

  23. Mookiah, M.R., et al., Decision support system for age-related macular degeneration using discrete wavelet transform. Med Biol Eng Comput, 2014. 52(9): p. 781-96.

    Article  Google Scholar 

  24. Fraccaro, P., et al., Combining macula clinical signs and patient characteristics for age--related macular degeneration diagnosis: a machine learning approach. BMC Ophthalmol, 2015. 15: p. 10.

    Google Scholar 

  25. Bogunovic, H., et al., Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging. Invest Ophthalmol Vis Sci, 2017. 58(6): p. Bio141-bio150.

    Article  Google Scholar 

  26. Bogunovic, H., et al., Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach. Invest Ophthalmol Vis Sci, 2017. 58(7): p. 3240-3248.

    Google Scholar 

  27. Caixinha, M. and S. Nunes, Machine Learning Techniques in Clinical Vision Sciences. Curr Eye Res, 2017. 42(1): p. 1-15.

    Article  Google Scholar 

  28. Rosner, B., R.J. Glynn, and M.L. Lee, A nonparametric test for observational non-normally distributed ophthalmic data with eye-specific exposures and outcomes. Ophthalmic Epidemiol, 2007. 14(4): p. 243-50.

    Article  Google Scholar 

  29. Grant, W.M., Clinical measurements of aqueous outflow. AMA Arch Ophthalmol, 1951. 46(2): p. 113-31.

    Google Scholar 

  30. Stamer, W.D., et al., Biomechanics of Schlemm’s canal endothelium and intraocular pressure reduction. Prog Retin Eye Res, 2015. 44: p. 86-98.

    Google Scholar 

  31. Carreon, T., et al., Aqueous outflow --- A continuum from trabecular meshwork to episcleral veins. Prog Retin Eye Res, 2017. 57: p. 108-133.

    Google Scholar 

  32. Zeng, D., et al., Young’s modulus of elasticity of Schlemm’s canal endothelial cells. Biomech Model Mechanobiol, 2010. 9(1): p. 19-33.

    Google Scholar 

  33. Kagemann, L., et al., Identification and assessment of Schlemm’s canal by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci, 2010. 51(8): p. 4054-9.

    Google Scholar 

  34. Kagemann, L., et al., IOP elevation reduces Schlemm’s canal cross-sectional area. Invest Ophthalmol Vis Sci, 2014. 55(3): p. 1805-9.

    Google Scholar 

  35. Wang, F., et al., Comparison of Schlemm’s canal’s biological parameters in primary open-angle glaucoma and normal human eyes with swept source optical. J Biomed Opt, 2012. 17(11): p. 116008.

    Google Scholar 

  36. Pant, A.D., Kagemann, L., Schuman, J.S., Sigal, I.A., Amini, R., An imaged-based inverse finite element method to determine in-vivo mechanical properties of the human trabecular meshwork. Journal for Modeling in Ophthalmology, 2017. 3: p. 100-111.

    Google Scholar 

  37. Xin, C., et al., Aqueous outflow regulation: Optical coherence tomography implicates pressure-dependent tissue motion. Exp Eye Res, 2017. 158: p. 171-186.

    Google Scholar 

  38. Hariri, S., et al., Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography. J Biomed Opt, 2014. 19(10): p. 106013.

    Article  Google Scholar 

  39. Francis, A.W., et al., Morphometric analysis of aqueous humor outflow structures with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci, 2012. 53(9): p. 5198-207.

    Google Scholar 

  40. Li, P., et al., Pulsatile motion of the trabecular meshwork in healthy human subjects quantified by phase-sensitive optical coherence tomography. Biomed Opt Express, 2013. 4(10): p. 2051-65.

    Google Scholar 

  41. Sun, Y.C., et al., Pulsatile motion of trabecular meshwork in a patient with iris cyst by phase-sensitive optical coherence tomography: a case report. Quant Imaging Med Surg, 2015. 5(1): p. 171-3.

    Google Scholar 

  42. Burgoyne, C.F., et al., The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res, 2005. 24(1): p. 39-73.

    Google Scholar 

  43. Girard, M.J., et al., Translating ocular biomechanics into clinical practice: current state and future prospects. Curr Eye Res, 2015. 40(1): p. 1-18.

    Google Scholar 

  44. Spaide, R.F., H. Koizumi, and M.C. Pozzoni, Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol, 2008. 146(4): p. 496-500.

    Google Scholar 

  45. Lee, E.J., et al., Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol, 2011. 152(1): p. 87-95.e1.

    Google Scholar 

  46. Park, S.C., et al., Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Ophthalmology, 2012. 119(1): p. 3-9.

    Google Scholar 

  47. Nadler, Z., et al., Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes. Biomed Opt Express, 2013. 4(11): p. 2596-608.

    Google Scholar 

  48. Omodaka, K., et al., 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma. PLoS One, 2015. 10(4): p. e0122347.

    Article  Google Scholar 

  49. Wang, B., et al., In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography. Invest Ophthalmol Vis Sci, 2013. 54(13): p. 8270-4.

    Google Scholar 

  50. Sigal, I.A., et al., Recent advances in OCT imaging of the lamina cribrosa. Br J Ophthalmol, 2014. 98 Suppl 2: p. ii34-9.

    Google Scholar 

  51. Hermann, B., et al., Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett, 2004. 29(18): p. 2142-4.

    Google Scholar 

  52. Girard, M.J., et al., Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Invest Ophthalmol Vis Sci, 2011. 52(10): p. 7738-48.

    Google Scholar 

  53. Mari, J.M., et al., Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation. Invest Ophthalmol Vis Sci, 2013. 54(3): p. 2238-47.

    Google Scholar 

  54. Kim, T.W., et al., Imaging of the lamina cribrosa in glaucoma: perspectives of pathogenesis and clinical applications. Curr Eye Res, 2013. 38(9): p. 903-9.

    Google Scholar 

  55. Sigal, I.A., et al., Eye-specific IOP-induced displacements and deformations of human lamina cribrosa. Invest Ophthalmol Vis Sci, 2014. 55(1): p. 1-15.

    Google Scholar 

  56. Girard, M.J., et al., In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm. J R Soc Interface, 2013. 10(87): p. 20130459.

    Google Scholar 

  57. Midgett, D.E., et al., The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations. Acta Biomater, 2017. 53: p. 123-139.

    Google Scholar 

  58. Strouthidis, N.G. and M.J. Girard, Altering the way the optic nerve head responds to intraocular pressure-a potential approach to glaucoma therapy. Curr Opin Pharmacol, 2013. 13(1): p. 83-9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Kagemann .

Editor information

Editors and Affiliations

Additional information

Disclaimer: All views and opinions express herein are those of the authors, and do not express federal policy or the views of the US Food and Drug Administration.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tauber, J., Kagemann, L. (2019). The Next Frontier of Imaging in Ophthalmology: Machine Learning and Tissue Biomechanics. In: Guidoboni, G., Harris, A., Sacco, R. (eds) Ocular Fluid Dynamics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-25886-3_23

Download citation

Publish with us

Policies and ethics