Skip to main content

The Pathogenesis of Physical Frailty and Sarcopenia

  • Chapter
  • First Online:
Frailty and Sarcopenia in Cirrhosis
  • 488 Accesses

Abstract

Disordered energy metabolism in cirrhosis contributes to skeletal muscle proteolysis and impaired protein synthesis with dysregulated protein homeostasis (proteostasis) and resultant sarcopenia. Circulating abnormalities including hyperammonemia, hypogonadism, decreased branched chain amino acids, and endotoxemia are potential mediators of the liver-muscle axis. Etiology of liver disease including ethanol and fatty acids also directly affects muscle proteostasis. Transcriptional upregulation of myostatin via ammonia-induced activation of p65NFKB impairs signaling by the protein homeostasis regulatory molecule, mammalian target of rapamycin complex 1 (mTORC1). The recently described hyperammonemic stress response (HASR) is characterized by activation of an amino acid sensor, general control non-derepressible 2 (GCN2) with persistent phosphorylation of eIF2α with reduction in protein synthesis. Hyperammonemia of cirrhosis also increases autophagic proteolysis and mitochondrial dysfunction with cataplerosis. Targeting mediators of the liver-muscle axis, the signaling perturbations in the muscle, and strategies to restore metabolic homeostasis with ammonia-lowering, anaplerotic agents and myostatin antagonists have the potential to be novel and effective therapies to reverse sarcopenia in cirrhosis.

Supported in part by: NIH RO1 GM119174; RO1 DK 113196; P50 AA024333; R21 AR 71046; U01AA026976; UO1 DK 061732 and Mikati Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Periyalwar P, Dasarathy S. Malnutrition in cirrhosis: contribution and consequences of sarcopenia on metabolic and clinical responses. Clin Liver Dis. 2012;16:95–131.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dasarathy S. Consilience in sarcopenia of cirrhosis. J Cachexia Sarcopenia Muscle. 2012;3:225–37.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ebadi M, Montano-Loza AJ. Insights on clinical relevance of sarcopenia in patients with cirrhosis and sepsis. Liver Int. 2018;38:786–8.

    Article  PubMed  Google Scholar 

  4. Ebadi M, Montano-Loza AJ. Sarcopenia and frailty in the prognosis of patients on the liver transplant waiting list. Liver Transpl. 2019;25:7–9.

    Article  PubMed  Google Scholar 

  5. Sinclair M, Poltavskiy E, Dodge JL, Lai JC. Frailty is independently associated with increased hospitalisation days in patients on the liver transplant waitlist. World J Gastroenterol. 2017;23:899–905.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lai JC, Covinsky KE, McCulloch CE, Feng S. The liver frailty index improves mortality prediction of the subjective clinician assessment in patients with cirrhosis. Am J Gastroenterol. 2018;113:235–42.

    Article  PubMed  Google Scholar 

  7. Dasarathy S. Cause and management of muscle wasting in chronic liver disease. Curr Opin Gastroenterol. 2016;32:159–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016;65:1232–44.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Antar R, Wong P, Ghali P. A meta-analysis of nutritional supplementation for management of hospitalized alcoholic hepatitis. Can J Gastroenterol. 2012;26:463–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Koretz RL. The evidence for the use of nutritional support in liver disease. Curr Opin Gastroenterol. 2014;30:208–14.

    Article  CAS  PubMed  Google Scholar 

  11. Fialla AD, Israelsen M, Hamberg O, Krag A, Gluud LL. Nutritional therapy in cirrhosis or alcoholic hepatitis: a systematic review and meta-analysis. Liver Int. 2015;35:2072–8.

    Article  PubMed  Google Scholar 

  12. Ney M, Vandermeer B, van Zanten SJ, Ma MM, Gramlich L, Tandon P. Meta-analysis: oral or enteral nutritional supplementation in cirrhosis. Aliment Pharmacol Ther. 2013;37:672–9.

    Article  CAS  PubMed  Google Scholar 

  13. Anthony TG. Mechanisms of protein balance in skeletal muscle. Domest Anim Endocrinol. 2016;56(Suppl):S23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dasarathy S, Hatzoglou M. Hyperammonemia and proteostasis in cirrhosis. Curr Opin Clin Nutr Metab Care. 2018;21:30–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sirabella D, De Angelis L, Berghella L. Sources for skeletal muscle repair: from satellite cells to reprogramming. J Cachexia Sarcopenia Muscle. 2013;4:125–36.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med. 2015;21:76–80.

    Article  CAS  PubMed  Google Scholar 

  17. McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, et al. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development. 2011;138:3657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tandon P, Raman M, Mourtzakis M, Merli M. A practical approach to nutritional screening and assessment in cirrhosis. Hepatology. 2017;65:1044–57.

    Article  PubMed  Google Scholar 

  19. Fiore P, Merli M, Andreoli A, De Lorenzo A, Masini A, Ciuffa L, et al. A comparison of skinfold anthropometry and dual-energy X-ray absorptiometry for the evaluation of body fat in cirrhotic patients. Clin Nutr. 1999;18:349–51.

    Article  CAS  PubMed  Google Scholar 

  20. Merli M, Riggio O, Dally L. Does malnutrition affect survival in cirrhosis? PINC (Policentrica Italiana Nutrizione Cirrosi). Hepatology. 1996;23:1041–6.

    Article  CAS  PubMed  Google Scholar 

  21. Romiti A, Merli M, Martorano M, Parrilli G, Martino F, Riggio O, et al. Malabsorption and nutritional abnormalities in patients with liver cirrhosis. Ital J Gastroenterol. 1990;22:118–23.

    CAS  PubMed  Google Scholar 

  22. Merli M, Nicolini G, Angeloni S, Riggio O. Malnutrition is a risk factor in cirrhotic patients undergoing surgery. Nutrition. 2002;18:978–86.

    Article  PubMed  Google Scholar 

  23. Riggio O, Angeloni S, Ciuffa L, Nicolini G, Attili AF, Albanese C, et al. Malnutrition is not related to alterations in energy balance in patients with stable liver cirrhosis. Clin Nutr. 2003;22:553–9.

    Article  CAS  PubMed  Google Scholar 

  24. Schiavo L, Busetto L, Cesaretti M, Zelber-Sagi S, Deutsch L, Iannelli A. Nutritional issues in patients with obesity and cirrhosis. World J Gastroenterol. 2018;24:3330–46.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eslamparast T, Montano-Loza AJ, Raman M, Tandon P. Sarcopenic obesity in cirrhosis-the confluence of 2 prognostic titans. Liver Int. 2018;38:1706–17.

    Article  PubMed  Google Scholar 

  26. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care. 2008;11:693–700.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dasarathy J, Alkhouri N, Dasarathy S. Changes in body composition after transjugular intrahepatic portosystemic stent in cirrhosis: a critical review of literature. Liver Int. 2011;31:1250–8.

    Article  PubMed  Google Scholar 

  28. Tsien C, Garber A, Narayanan A, Shah SN, Barnes D, Eghtesad B, et al. Post-liver transplantation sarcopenia in cirrhosis: a prospective evaluation. J Gastroenterol Hepatol. 2014;29:1250–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Carey EJ, Lai JC, Wang CW, Dasarathy S, Lobach I, Montano-Loza AJ, et al. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl. 2017;23:625–33.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ebadi M, Wang CW, Lai JC, Dasarathy S, Kappus MR, Dunn MA, et al. Poor performance of psoas muscle index for identification of patients with higher waitlist mortality risk in cirrhosis. J Cachexia Sarcopenia Muscle. 2018;9:1053–62.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gallagher D, Visser M, De Meersman RE, Sepulveda D, Baumgartner RN, Pierson RN, et al. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol. (1985) 1997;83:229–39.

    Google Scholar 

  32. Heymsfield SB, Peterson CM, Thomas DM, Heo M, Schuna JM Jr. Why are there race/ethnic differences in adult body mass index-adiposity relationships? A quantitative critical review. Obes Rev. 2016;17:262–75.

    Article  CAS  PubMed  Google Scholar 

  33. Cesari M, Landi F, Vellas B, Bernabei R, Marzetti E. Sarcopenia and physical frailty: two sides of the same coin. Front Aging Neurosci. 2014;6:192.

    PubMed  PubMed Central  Google Scholar 

  34. Kok B, Tandon P. Frailty in patients with cirrhosis. Curr Treat Options Gastroenterol. 2018;16:215–25.

    Article  PubMed  Google Scholar 

  35. McDaniel J, Davuluri G, Hill EA, Moyer M, Runkana A, Prayson R, et al. Hyperammonemia results in reduced muscle function independent of muscle mass. Am J Physiol Gastrointest Liver Physiol. 2016;310:G163–70.

    Article  PubMed  Google Scholar 

  36. Lai JC, Covinsky KE, Dodge JL, Boscardin WJ, Segev DL, Roberts JP, et al. Development of a novel frailty index to predict mortality in patients with end-stage liver disease. Hepatology. 2017;66:564–74.

    Article  PubMed  Google Scholar 

  37. Lai JC, Volk ML, Strasburg D, Alexander N. Performance-based measures associate with frailty in patients with end-stage liver disease. Transplantation. 2016;100:2656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bosoi CR, Oliveira MM, Ochoa-Sanchez R, Tremblay M, Ten Have GA, Deutz NE, et al. The bile duct ligated rat: a relevant model to study muscle mass loss in cirrhosis. Metab Brain Dis. 2017;32:513–8.

    Article  CAS  PubMed  Google Scholar 

  39. Dasarathy S, Muc S, Hisamuddin K, Edmison JM, Dodig M, McCullough AJ, et al. Altered expression of genes regulating skeletal muscle mass in the portacaval anastomosis rat. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1105–13.

    Article  CAS  PubMed  Google Scholar 

  40. Qiu J, Thapaliya S, Runkana A, Yang Y, Tsien C, Mohan ML, et al. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-kappaB-mediated mechanism. Proc Natl Acad Sci U S A. 2013;110:18162–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qiu J, Tsien C, Thapalaya S, Narayanan A, Weihl CC, Ching JK, et al. Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab. 2012;303:E983–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fortea JI, Fernandez-Mena C, Puerto M, Ripoll C, Almagro J, Banares J, et al. Comparison of two protocols of carbon tetrachloride-induced cirrhosis in Rats- improving yield and reproducibility. Sci Rep. 2018;8:9163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Jimenez W, Claria J, Arroyo V, Rodes J. Carbon tetrachloride induced cirrhosis in rats: a useful tool for investigating the pathogenesis of ascites in chronic liver disease. J Gastroenterol Hepatol. 1992;7:90–7.

    Article  CAS  PubMed  Google Scholar 

  44. Munoz Torres E, Paz Bouza JI, Lopez Bravo A, Abad Hernandez MM, Carrascal ME. Experimental thioacetamide-induced cirrhosis of the liver. Histol Histopathol. 1991;6:95–100.

    CAS  PubMed  Google Scholar 

  45. Thapaliya S, Runkana A, McMullen MR, Nagy LE, McDonald C, Naga Prasad SV, et al. Alcohol-induced autophagy contributes to loss in skeletal muscle mass. Autophagy. 2014;10:677–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar A, Davuluri G, Silva RNE, Engelen M, Ten Have GAM, Prayson R, et al. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology. 2017;65:2045–58.

    Article  CAS  PubMed  Google Scholar 

  47. Lopez-Lirola A, Gonzalez-Reimers E, Martin Olivera R, Santolaria-Fernandez F, Galindo-Martin L, Abreu-Gonzalez P, et al. Protein deficiency and muscle damage in carbon tetrachloride induced liver cirrhosis. Food Chem Toxicol. 2003;41:1789–97.

    Article  CAS  PubMed  Google Scholar 

  48. Gayan-Ramirez G, van de Casteele M, Rollier H, Fevery J, Vanderhoydonc F, Verhoeven G, et al. Biliary cirrhosis induces type IIx/b fiber atrophy in rat diaphragm and skeletal muscle, and decreases IGF-I mRNA in the liver but not in muscle. J Hepatol. 1998;29:241–9.

    Article  CAS  PubMed  Google Scholar 

  49. Burd NA, Tang JE, Moore DR, Phillips SM. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J Appl Physiol. 1985) 2009;106:1692–701.

    Article  CAS  Google Scholar 

  50. Tsien CD, McCullough AJ, Dasarathy S. Late evening snack: exploiting a period of anabolic opportunity in cirrhosis. J Gastroenterol Hepatol. 2012;27:430–41.

    Article  CAS  PubMed  Google Scholar 

  51. Mitchell WK, Wilkinson DJ, Phillips BE, Lund JN, Smith K, Atherton PJ. Human skeletal muscle protein metabolism responses to amino acid nutrition. Adv Nutr. 2016;7:828S–38S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Atherton PJ, Smith K. Muscle protein synthesis in response to nutrition and exercise. J Physiol. 2012;590:1049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kiens B, Essen-Gustavsson B, Christensen NJ, Saltin B. Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol. 1993;469:459–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hoppeler H. Skeletal muscle substrate metabolism. Int J Obes Relat Metab Disord. 1999;23(Suppl 3):S7–10.

    Article  CAS  PubMed  Google Scholar 

  55. Westerterp KR. Food quotient, respiratory quotient, and energy balance. Am J Clin Nutr. 1993;57:759S–64S; discussion 764S–765S.

    Article  CAS  PubMed  Google Scholar 

  56. Pozefsky T, Tancredi RG, Moxley RT, Dupre J, Tobin JD. Effects of brief starvation on muscle amino acid metabolism in nonobese man. J Clin Invest. 1976;57:444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Glass C, Hipskind P, Tsien C, Malin SK, Kasumov T, Shah SN, et al. Sarcopenia and a physiologically low respiratory quotient in patients with cirrhosis: a prospective controlled study. J Appl Physiol. 1985) 2013;114:559–65.

    Article  CAS  Google Scholar 

  58. Romijn JA, Endert E, Sauerwein HP. Glucose and fat metabolism during short-term starvation in cirrhosis. Gastroenterology. 1991;100:731–7.

    Article  CAS  PubMed  Google Scholar 

  59. Dasarathy J, McCullough AJ, Dasarathy S. Sarcopenia in alcoholic liver disease: clinical and molecular advances. Alcohol Clin Exp Res. 2017;41:1419–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Plank LD, Gane EJ, Peng S, Muthu C, Mathur S, Gillanders L, et al. Nocturnal nutritional supplementation improves total body protein status of patients with liver cirrhosis: a randomized 12-month trial. Hepatology. 2008;48:557–66.

    Article  PubMed  Google Scholar 

  61. Muller MJ, Bottcher J, Selberg O. Energy expenditure and substrate metabolism in liver cirrhosis. Int J Obes Relat Metab Disord. 1993;17(Suppl 3):S102–6; discussion S115.

    PubMed  Google Scholar 

  62. Muller MJ, Lautz HU, Plogmann B, Burger M, Korber J, Schmidt FW. Energy expenditure and substrate oxidation in patients with cirrhosis: the impact of cause, clinical staging and nutritional state. Hepatology. 1992;15:782–94.

    Article  CAS  PubMed  Google Scholar 

  63. Muller MJ, Bottcher J, Selberg O, Weselmann S, Boker KH, Schwarze M, et al. Hypermetabolism in clinically stable patients with liver cirrhosis. Am J Clin Nutr. 1999;69:1194–201.

    Article  CAS  PubMed  Google Scholar 

  64. Muller MJ, Boker KH, Selberg O. Are patients with liver cirrhosis hypermetabolic? Clin Nutr. 1994;13:131–44.

    Article  CAS  PubMed  Google Scholar 

  65. Peng S, Plank LD, McCall JL, Gillanders LK, McIlroy K, Gane EJ. Body composition, muscle function, and energy expenditure in patients with liver cirrhosis: a comprehensive study. Am J Clin Nutr. 2007;85:1257–66.

    Article  CAS  PubMed  Google Scholar 

  66. Morton RW, Traylor DA, Weijs PJM, Phillips SM. Defining anabolic resistance: implications for delivery of clinical care nutrition. Curr Opin Crit Care. 2018;24:124–30.

    Article  PubMed  Google Scholar 

  67. Rennie MJ, Wilkes EA. Maintenance of the musculoskeletal mass by control of protein turnover: the concept of anabolic resistance and its relevance to the transplant recipient. Ann Transplant. 2005;10:31–4.

    PubMed  Google Scholar 

  68. Tessari P, Inchiostro S, Barazzoni R, Zanetti M, Orlando R, Biolo G, et al. Fasting and postprandial phenylalanine and leucine kinetics in liver cirrhosis. Am J Phys. 1994;267:E140–9.

    CAS  Google Scholar 

  69. Tessari P, Barazzoni R, Kiwanuka E, Davanzo G, De Pergola G, Orlando R, et al. Impairment of albumin and whole body postprandial protein synthesis in compensated liver cirrhosis. Am J Physiol Endocrinol Metab. 2002;282:E304–11.

    Article  CAS  PubMed  Google Scholar 

  70. Tessari P, Biolo G, Inchiostro S, Orlando R, Vettore M, Sergi G. Leucine and phenylalanine kinetics in compensated liver cirrhosis: effects of insulin. Gastroenterology. 1993;104:1712–21.

    Article  CAS  PubMed  Google Scholar 

  71. Tessari P, Kiwanuka E, Vettore M, Barazzoni R, Zanetti M, Cecchet D, et al. Phenylalanine and tyrosine kinetics in compensated liver cirrhosis: effects of meal ingestion. Am J Physiol Gastrointest Liver Physiol. 2008;295:G598–604.

    Article  CAS  PubMed  Google Scholar 

  72. Tessari P. Protein metabolism in liver cirrhosis: from albumin to muscle myofibrils. Curr Opin Clin Nutr Metab Care. 2003;6:79–85.

    Article  CAS  PubMed  Google Scholar 

  73. Tessari P, Zanetti M, Barazzoni R, Biolo G, Orlando R, Vettore M, et al. Response of phenylalanine and leucine kinetics to branched chain-enriched amino acids and insulin in patients with cirrhosis. Gastroenterology. 1996;111:127–37.

    Article  CAS  PubMed  Google Scholar 

  74. McCullough AJ, Mullen KD, Kalhan SC. Defective nonoxidative leucine degradation and endogenous leucine flux in cirrhosis during an amino acid infusion. Hepatology. 1998;28:1357–64.

    Article  CAS  PubMed  Google Scholar 

  75. McCullough AJ, Mullen KD, Tavill AS, Kalhan SC. In vivo differences between the turnover rates of leucine and leucine's ketoacid in stable cirrhosis. Gastroenterology. 1992;103:571–8.

    Article  CAS  PubMed  Google Scholar 

  76. Mullen KD, Denne SC, McCullough AJ, Savin SM, Bruno D, Tavill AS, et al. Leucine metabolism in stable cirrhosis. Hepatology. 1986;6:622–30.

    Article  CAS  PubMed  Google Scholar 

  77. Morrison WL, Bouchier IA, Gibson JN, Rennie MJ. Skeletal muscle and whole-body protein turnover in cirrhosis. Clin Sci (Lond). 1990;78:613–9.

    Article  CAS  Google Scholar 

  78. Tsien C, Davuluri G, Singh D, Allawy A, Ten Have GA, Thapaliya S, et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology. 2015;61:2018–29.

    Article  CAS  PubMed  Google Scholar 

  79. Zoli M, Marchesini G, Dondi C, Bianchi GP, Pisi E. Myofibrillar protein catabolic rates in cirrhotic patients with and without muscle wasting. Clin Sci (Lond). 1982;62:683–6.

    Article  CAS  Google Scholar 

  80. Marchesini G, Zoli M, Angiolini A, Dondi C, Bianchi FB, Pisi E. Muscle protein breakdown in liver cirrhosis and the role of altered carbohydrate metabolism. Hepatology. 1981;1:294–9.

    Article  CAS  PubMed  Google Scholar 

  81. Dasarathy S, McCullough AJ, Muc S, Schneyer A, Bennett CD, Dodig M, et al. Sarcopenia associated with portosystemic shunting is reversed by follistatin. J Hepatol. 2011;54:915–21.

    Article  CAS  PubMed  Google Scholar 

  82. Davuluri G, Allawy A, Thapaliya S, Rennison JH, Singh D, Kumar A, et al. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress. J Physiol. 2016;594:7341–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Davuluri G, Krokowski D, Guan BJ, Kumar A, Thapaliya S, Singh D, et al. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis. J Hepatol. 2016;65:929–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nieuwoudt S, Mulya A, Fealy CE, Martelli E, Dasarathy S, Naga Prasad SV, et al. In vitro contraction protects against palmitate-induced insulin resistance in C2C12 myotubes. Am J Physiol Cell Physiol. 2017;313:C575–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Dasarathy S, Mookerjee RP, Rackayova V, Rangroo Thrane V, Vairappan B, Ott P, et al. Ammonia toxicity: from head to toe? Metab Brain Dis. 2017;32:529–38.

    Article  CAS  PubMed  Google Scholar 

  86. Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11:113–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tachiyama G, Sakon M, Kambayashi J, Iijima S, Tsujinaka T, Mori T. Endogenous endotoxemia in patients with liver cirrhosis--a quantitative analysis of endotoxin in portal and peripheral blood. Jpn J Surg. 1988;18:403–8.

    Article  CAS  PubMed  Google Scholar 

  88. Macallan DC, Cook EB, Preedy VR, Griffin GE. The effect of endotoxin on skeletal muscle protein gene expression in the rat. Int J Biochem Cell Biol. 1996;28:511–20.

    Article  CAS  PubMed  Google Scholar 

  89. Chen HW, Dunn MA. Muscle at risk: the multiple impacts of Ammonia on sarcopenia and frailty in cirrhosis. Clin Transl Gastroenterol. 2016;7:e170.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Adeva MM, Souto G, Blanco N, Donapetry C. Ammonium metabolism in humans. Metabolism. 2012;61:1495–511.

    Article  CAS  PubMed  Google Scholar 

  91. Dimski DS. Ammonia metabolism and the urea cycle: function and clinical implications. J Vet Intern Med. 1994;8:73–8.

    Article  CAS  PubMed  Google Scholar 

  92. Schutz Y. Protein turnover, ureagenesis and gluconeogenesis. Int J Vitam Nutr Res. 2011;81:101–7.

    Article  CAS  PubMed  Google Scholar 

  93. Rudman D, DiFulco TJ, Galambos JT, Smith RB 3rd, Salam AA, Warren WD. Maximal rates of excretion and synthesis of urea in normal and cirrhotic subjects. J Clin Invest. 1973;52:2241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shangraw RE, Jahoor F. Effect of liver disease and transplantation on urea synthesis in humans: relationship to acid-base status. Am J Phys. 1999;276:G1145–52.

    CAS  Google Scholar 

  95. Vilstrup H. Synthesis of urea after stimulation with amino acids: relation to liver function. Gut. 1980;21:990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Olde Damink SW, Jalan R, Dejong CH. Interorgan ammonia trafficking in liver disease. Metab Brain Dis. 2009;24:169–81.

    Article  CAS  PubMed  Google Scholar 

  97. Ganda OP, Ruderman NB. Muscle nitrogen metabolism in chronic hepatic insufficiency. Metabolism. 1976;25:427–35.

    Article  CAS  PubMed  Google Scholar 

  98. Lockwood AH, McDonald JM, Reiman RE, Gelbard AS, Laughlin JS, Duffy TE, et al. The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J Clin Invest. 1979;63:449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kant S, Davuluri G, Alchirazi KA, Welch N, Heit C, Kumar A, et al. Ethanol sensitizes skeletal muscle to ammonia-induced molecular perturbations. J Biol Chem. 2019;294:7231–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ono Y, Sakamoto K. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the toll-like receptor 4-nuclear factor-kappaB signaling pathway and myoblast-derived tumor necrosis factor-alpha. PLoS One. 2017;12:e0182040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. de la Garza RG, Morales-Garza LA, Martin-Estal I, Castilla-Cortazar I. Insulin-like growth Factor-1 deficiency and cirrhosis establishment. J Clin Med Res. 2017;9:233–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Bucuvalas JC, Horn JA, Chernausek SD. Resistance to growth hormone in children with chronic liver disease. Pediatr Transplant. 1997;1:73–9.

    CAS  PubMed  Google Scholar 

  103. Sinclair M, Grossmann M, Hoermann R, Angus PW, Gow PJ. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: a randomised controlled trial. J Hepatol. 2016;65:906–13.

    Article  CAS  PubMed  Google Scholar 

  104. Verboeket-van de Venne WP, Westerterp KR, van Hoek B, Swart GR. Energy expenditure and substrate metabolism in patients with cirrhosis of the liver: effects of the pattern of food intake. Gut. 1995;36:110–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Berzigotti A, Saran U, Dufour JF. Physical activity and liver diseases. Hepatology. 2016;63:1026–40.

    Article  CAS  PubMed  Google Scholar 

  106. Sinclair M, Grossmann M, Gow PJ, Angus PW. Testosterone in men with advanced liver disease: abnormalities and implications. J Gastroenterol Hepatol. 2015;30:244–51.

    Article  PubMed  Google Scholar 

  107. Dasarathy S, Mullen KD, Dodig M, Donofrio B, McCullough AJ. Inhibition of aromatase improves nutritional status following portacaval anastomosis in male rats. J Hepatol. 2006;45:214–20.

    Article  CAS  PubMed  Google Scholar 

  108. Kovacheva EL, Hikim AP, Shen R, Sinha I, Sinha-Hikim I. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, notch, and Akt signaling pathways. Endocrinology. 2010;151:628–38.

    Article  CAS  PubMed  Google Scholar 

  109. Adamek A, Kasprzak A. Insulin-like growth factor (IGF) system in liver diseases. Int J Mol Sci. 2018;19.

    Google Scholar 

  110. Baruch Y, Assy N, Amit T, Krivoy N, Strickovsky D, Orr ZS, et al. Spontaneous pulsatility and pharmacokinetics of growth hormone in liver cirrhotic patients. J Hepatol. 1998;29:559–64.

    Article  CAS  PubMed  Google Scholar 

  111. Liu W, Thomas SG, Asa SL, Gonzalez-Cadavid N, Bhasin S, Ezzat S. Myostatin is a skeletal muscle target of growth hormone anabolic action. J Clin Endocrinol Metab. 2003;88:5490–6.

    Article  CAS  PubMed  Google Scholar 

  112. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700.

    Article  CAS  PubMed  Google Scholar 

  113. Lin RS, Lee FY, Lee SD, Tsai YT, Lin HC, Lu RH, et al. Endotoxemia in patients with chronic liver diseases: relationship to severity of liver diseases, presence of esophageal varices, and hyperdynamic circulation. J Hepatol. 1995;22:165–72.

    Article  CAS  PubMed  Google Scholar 

  114. Bode C, Kugler V, Bode JC. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J Hepatol. 1987;4:8–14.

    Article  CAS  PubMed  Google Scholar 

  115. Tarabees R, Hill D, Rauch C, Barrow PA, Loughna PT. Endotoxin transiently inhibits protein synthesis through Akt and MAPK mediating pathways in C2C12 myotubes. Am J Physiol Cell Physiol. 2011;301:C895–902.

    Article  CAS  PubMed  Google Scholar 

  116. Ghosh S, Lertwattanarak R, Garduno Jde J, Galeana JJ, Li J, Zamarripa F, et al. Elevated muscle TLR4 expression and metabolic endotoxemia in human aging. J Gerontol A Biol Sci Med Sci. 2015;70:232–46.

    Article  CAS  PubMed  Google Scholar 

  117. Han HQ, Mitch WE. Targeting the myostatin signaling pathway to treat muscle wasting diseases. Curr Opin Support Palliat Care. 2011;5:334–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009;296:C1258–70.

    Article  CAS  PubMed  Google Scholar 

  119. Dasarathy S. Myostatin and beyond in cirrhosis: all roads lead to sarcopenia. J Cachexia Sarcopenia Muscle. 2017;8:864–9.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol. 2014;49:59–68.

    Article  CAS  PubMed  Google Scholar 

  121. Yoon MS. mTOR as a key regulator in maintaining skeletal muscle mass. Front Physiol. 2017;8:788.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008;412:179–90.

    Article  CAS  PubMed  Google Scholar 

  123. Johansen ML, Bak LK, Schousboe A, Iversen P, Sorensen M, Keiding S, et al. The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes. Neurochem Int. 2007;50:1042–51.

    Article  CAS  PubMed  Google Scholar 

  124. Guan BJ, Krokowski D, Majumder M, Schmotzer CL, Kimball SR, Merrick WC, et al. Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2alpha. J Biol Chem. 2014;289:12593–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519–29.

    Article  CAS  PubMed  Google Scholar 

  126. Dasarathy S, Dodig M, Muc SM, Kalhan SC, McCullough AJ. Skeletal muscle atrophy is associated with an increased expression of myostatin and impaired satellite cell function in the portacaval anastamosis rat. Am J Physiol Gastrointest Liver Physiol. 2004;287:G1124–30.

    Article  CAS  PubMed  Google Scholar 

  127. Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 2006;34:7–11.

    Article  CAS  PubMed  Google Scholar 

  128. Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell. 2000;6:269–79.

    Article  CAS  PubMed  Google Scholar 

  129. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC. Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol. 2014;11:13–30.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kafri M, Metzl-Raz E, Jona G, Barkai N. The cost of protein production. Cell Rep. 2016;14:22–31.

    Article  CAS  PubMed  Google Scholar 

  131. Duarte-Rojo A, Ruiz-Margain A, Montano-Loza AJ, Macias-Rodriguez RU, Ferrando A, Kim WR. Exercise and physical activity for patients with end-stage liver disease: improving functional status and sarcopenia while on the transplant waiting list. Liver Transpl. 2018;24:122–39.

    Article  PubMed  Google Scholar 

  132. Lai JC. Editorial: advancing adoption of frailty to improve the Care of Patients with cirrhosis: time for a consensus on a frailty index. Am J Gastroenterol. 2016;111:1776–7.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Bay Nielsen H, Secher NH, Clemmesen O, Ott P. Maintained cerebral and skeletal muscle oxygenation during maximal exercise in patients with liver cirrhosis. J Hepatol. 2005;43:266–71.

    Article  CAS  PubMed  Google Scholar 

  134. Lunzer M, Newman SP, Sherlock S. Skeletal muscle blood flow and neurovascular reactivity in liver disease. Gut. 1973;14:354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jeppesen JB, Mortensen C, Bendtsen F, Moller S. Lactate metabolism in chronic liver disease. Scand J Clin Lab Invest. 2013;73:293–9.

    Article  CAS  PubMed  Google Scholar 

  136. Casaburi R, Oi S. Effect of liver disease on the kinetics of lactate removal after heavy exercise. Eur J Appl Physiol Occup Physiol. 1989;59:89–97.

    Article  CAS  PubMed  Google Scholar 

  137. Robin ED. Special report: dysoxia. Abnormal tissue oxygen utilization. Arch Intern Med. 1977;137:905–10.

    Article  CAS  PubMed  Google Scholar 

  138. Brownlee EB. The novelty of research--challenging the post-basic student. SA Nurs J. 1977;44:21.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Dasarathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dasarathy, S. (2020). The Pathogenesis of Physical Frailty and Sarcopenia. In: Tandon, P., Montano-Loza, A. (eds) Frailty and Sarcopenia in Cirrhosis. Springer, Cham. https://doi.org/10.1007/978-3-030-26226-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26226-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26225-9

  • Online ISBN: 978-3-030-26226-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics