Skip to main content

Metagenomics Approaches to Study Microbes in the E-waste Polluted Environment

  • Chapter
  • First Online:
Electronic Waste Pollution

Part of the book series: Soil Biology ((SOILBIOL,volume 57))

  • 1161 Accesses

Abstract

Metagenomics approaches have tremendous application in encompassing ecological sustainability along with biotic and abiotic factors. The significance of metagenomics is well seen in establishing the role of microbes in sustainable environmental management tools such as bioremediation. This chapter highlights the recent innovative metagenomic techniques in determining the substantial role of microbes in environmental systems contaminated by e-waste dumping. We also describe modern metagenomic analysis for a variety of microbial communities and their key functions in e-waste soil. Moreover, culture-based and culture-independent integrated metagenomic analyses are discussed to authenticate microbial community taxonomic profiling and characterization of sustainable ecological development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albuquerque P, Ribeiro N, Almeida A, Panschin I, Porfirio A, Vales M, Tavares F (2017) Application of a dot blot hybridization platform to assess Streptococcus uberis population structure in dairy herds. Front Microbiol 8:54

    PubMed  PubMed Central  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56(6):1919–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balkwill DL, Boone DR (2018) Identity and diversity of microorganisms cultured from subsurface environments. In: Microbiology of the terrestrial deep subsurface. CRC, Boca Raton, pp 105–118

    Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515(7528):505

    CAS  PubMed  Google Scholar 

  • Bender SF, Wagg C, van der Heijden MG (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31(6):440–452

    Google Scholar 

  • Bordukalo-NikÅ¡ić, T. (2007) Reverse transcription-polymerase chain reaction (RT-PCR). Metode u molekularnoj biologiji, Institut RuÄ‘er BoÅ¡ković

    Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Agrofor Syst 54(3):249

    Google Scholar 

  • Camus C, Faugeron S, Buschmann AH (2018) Assessment of genetic and phenotypic diversity of the giant kelp, Macrocystis pyrifera, to support breeding programs. Algal Res 30:101–112

    Google Scholar 

  • De Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol Biochem 38(8):2092–2103

    Google Scholar 

  • Fernández-Arrojo L, Guazzaroni M-E, López-Cortés N, Beloqui A, Ferrer M (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21(6):725–733

    PubMed  Google Scholar 

  • Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Angiuoli SV (2008) The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26(5):541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finniss DG, Kaptchuk TJ, Miller F, Benedetti F (2010) Biological, clinical, and ethical advances of placebo effects. Lancet 375(9715):686–695

    PubMed  PubMed Central  Google Scholar 

  • Grattepanche JD, Walker LM, Ott BM, Paim Pinto DL, Delwiche CF, Lane CE, Katz LA (2018) Microbial diversity in the eukaryotic SAR clade: illuminating the darkness between morphology and molecular data. Bioessays 40(4):1700198

    Google Scholar 

  • Ha NN, Agusa T, Ramu K, Tu NPC, Murata S, Bulbule KA, Tanabe S (2009) Contamination by trace elements at e-waste recycling sites in Bangalore, India. Chemosphere 76(1):9–15

    PubMed  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di H (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9(9):2364–2374

    CAS  PubMed  Google Scholar 

  • Heacock M, Kelly CB, Suk WA (2016) E-waste: the growing global problem and next steps. Rev Environ Health 31(1):131–135

    CAS  PubMed  Google Scholar 

  • Horwath WR (2017) The role of the soil microbial biomass in cycling nutrients. In: Microbial bio mass: a paradigm shift in terrestrial biogeochemistry. World Scientific, London, pp 41–66

    Google Scholar 

  • Inbar E, Green SJ, Hadar Y, Minz D (2005) Competing factors of compost concentration and proximity to root affect the distribution of streptomycetes. Microb Ecol 50(1):73–81

    PubMed  Google Scholar 

  • Jansson JK, Hofmockel KS (2018) The soil microbiome—from metagenomics to metaphenomics. Curr Opin Microbiol 43:162–168

    CAS  PubMed  Google Scholar 

  • Kardol P, Veen G, Teste FP, Perring MP (2015) Peeking into the black box: a trait-based approach to predicting plant–soil feedback. New Phytol 206(1):1–4

    PubMed  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58(2):169–188

    CAS  PubMed  Google Scholar 

  • Knowles JG, Cole AL (2008) Handbook of the arts in qualitative research: perspectives, methodologies, examples, and issues. Sage, Thousand Oaks

    Google Scholar 

  • Liu Y-F, Galzerani DD, Mbadinga SM, Zaramela LS, Gu J-D, Mu B-Z et al (2018) Metabolic capability and in situ activity of microorganisms in an oil reservoir. Microbiome 6(1):5

    PubMed  PubMed Central  Google Scholar 

  • Loureiro C, Medema MH, van der Oost J, Sipkema D (2018) Exploration and exploitation of the environment for novel specialized metabolites. Curr Opin Biotechnol 50:206–213

    CAS  PubMed  Google Scholar 

  • Lynch J, Benedetti A, Insam H, Nuti M, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils 40(6):363–385

    CAS  Google Scholar 

  • Martinez-Murcia A, Acinas S, Rodriguez-Valera F (1995) Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiol Ecol 17(4):247–255

    CAS  Google Scholar 

  • Mastriani M, Giraldez A (2018) Microarrays denoising via smoothing of coefficients in wavelet domain. arXiv preprint arXiv:1807.11571

    Google Scholar 

  • Matt M, Gaunand A, Joly PB, Colinet L (2017) Opening the black box of impact: ideal-type impact pathways in a public agricultural research organization. Res Policy 46(1):207–218

    Google Scholar 

  • Meert JG, Torsvik TH, Eide EA, Dahlgren S (1998) Tectonic significance of the Fen Province, S. Norway: constraints from geochronology and paleomagnetism. J Geol 106(5):553–564

    Google Scholar 

  • Mérillon J-M, Riviere C (2018) Natural antimicrobial agents, vol 19. Springer, Cham, Switzerland

    Google Scholar 

  • Mohanty S, Swain CK (2018) Role of microbes in climate smart agriculture. In: Microorganisms for green revolution. Springer, Singapore, pp 129–140

    Google Scholar 

  • Morgan XC, Huttenhower C (2012) Human microbiome analysis. PLoS Comput Biol 8(12):e1002808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda DK, Chaudhary R, Kumar D (2018) Molecular approaches for identification of lactobacilli from traditional dairy products. In: Advances in animal biotechnology and its applications. Springer, Singapore, pp 181–196

    Google Scholar 

  • Oguntoyinbo FA, Tourlomousis P, Gasson MJ, Narbad A (2011) Analysis of bacterial communities of traditional fermented West African cereal foods using culture independent methods. Int J Food Microbiol 145(1):205–210

    PubMed  Google Scholar 

  • Parsley LC, Consuegra EJ, Kakirde KS, Land AM, Harper WF, Liles MR (2010) Identification of diverse antimicrobial resistance determinants carried on bacterial, plasmid, or viral metagenomes from an activated sludge microbial assemblage. Appl Environ Microbiol 76(11):3753–3757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70(9):5426–5433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peters S, Koschinsky S, Schwieger F, Tebbe CC (2000) Succession of microbial communities during hot composting as detected by PCR–single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 66(3):930–936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen DG, Dahllöf I (2005) Improvements for comparative analysis of changes in diversity of microbial communities using internal standards in PCR-DGGE. FEMS Microbiol Ecol 53(3):339–348

    CAS  PubMed  Google Scholar 

  • Rangel DE, Finlay RD, Hallsworth JE, Dadachova E, Gadd GM (2018) Fungal strategies for dealing with environment- and agriculture-induced stresses. Fungal Biol 122(6):602–612

    PubMed  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schloter M, Nannipieri P, Sørensen SJ, van Elsas JD (2018) Microbial indicators for soil quality. Biol Fertil Soils 54(1):1–10

    CAS  Google Scholar 

  • Sunamura M, Maruyama A (2006) A digital imaging procedure for seven-probe-labeling FISH (rainbow-FISH) and its application to estuarine microbial communities. FEMS Microbiol Ecol 55(1):159–166

    CAS  PubMed  Google Scholar 

  • Taketani RG, Kavamura VN, dos Santos SN (2017) Diversity and technological aspects of microorganisms from semiarid environments. In: Diversity and benefits of microorganisms from the tropics. Springer, Cham, pp 3–19

    Google Scholar 

  • Tansel B (2017) From electronic consumer products to e-wastes: global outlook, waste quantities, recycling challenges. Environ Int 98:35–45

    PubMed  Google Scholar 

  • Theron J, Cloete T (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 26(1):37–57

    CAS  PubMed  Google Scholar 

  • Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6(11):805

    CAS  PubMed  Google Scholar 

  • Tringe SG, Von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW et al (2005) Comparative metagenomics of microbial communities. Science 308(5721):554–557

    CAS  PubMed  Google Scholar 

  • UNEP (2005) http://wedocs.unep.org/handle/20.500.11822/183

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    CAS  PubMed  Google Scholar 

  • Wilcox TM, Schwartz MK, Lowe WH (2018) Evolutionary community ecology: time to think outside the (taxonomic) box. Trends Ecol Evol 33(4):240–250

    PubMed  Google Scholar 

  • Wood SA, Bradford MA (2018) Leveraging a new understanding of how belowground food webs stabilize soil organic matter to promote ecological intensification of agriculture. In: Soil carbon storage. Elsevier, Amsterdam, pp 117–136

    Google Scholar 

  • Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv (CSUR) 38(4):13

    Google Scholar 

  • Zhang L, Dai Y, Chen J, Hong L, Liu Y, Ke Q, Chen Z (2018) Comparison of the performance in detection of HPV infections between the high-risk HPV genotyping real time PCR and the PCR-reverse dot blot assays. J Med Virol 90(1):177–183

    CAS  PubMed  Google Scholar 

  • Zoetendal EG, Cheng B, Koike S, Mackie RI (2004) Molecular microbial ecology of the gastrointestinal tract: from phylogeny to function. Curr Issues Intest Microbiol 5(2):31–48

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naseer Ali Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, N.A., Kaleem, I., Rasheed, Y. (2019). Metagenomics Approaches to Study Microbes in the E-waste Polluted Environment. In: Hashmi, M., Varma, A. (eds) Electronic Waste Pollution. Soil Biology, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-030-26615-8_11

Download citation

Publish with us

Policies and ethics