Skip to main content

Introduction to Network Inference in Genomics

  • Chapter
  • First Online:
Network Science

Abstract

The genome is the archetypical complex system: it is a finely tuned whole whose many parts, such as DNA, RNA and proteins, interact at various levels to execute intricate functions, such as repair, replication and adapting to the external environment. One particularly effective way of conceptualizing this complex system is by means of a network, in which the vertices describe the genomic components and the edges describe their physical or functional interactions. With the advent of modern high-throughput genomic measuring devices, such as microarrays, RNA-seq and other next generation sequencing tools, it has become possible to measure the vertices of the genomic system in real time. One central question is whether from these measurements it is possible to reconstruct the edges of the genomic network. This essay describes three modelling and inference strategies to answer this central biological question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abegaz, F. & Wit, E. (2013), ‘Sparse time series chain graphical models for reconstructing genetic networks’, Biostatistics14(3), 586–599.

    Article  Google Scholar 

  • Aderhold, A., Husmeier, D. & Grzegorczyk, M. (2014), ‘Statistical inference of regulatory networks for circadian regulation’, Statistical applications in genetics and molecular biology13(3), 227–273.

    Article  MathSciNet  Google Scholar 

  • Akutsu, T., Miyano, S. & Kuhara, S. (1999), ‘Identification of genetic networks from a small number of gene expression patterns under the \(\text{Boolean}\) network model’, Pacific Symposium on Biocomputing pp. 17–28.

    Google Scholar 

  • Behrouzi, P. & Wit, E. C. (2017), ‘Detecting epistatic selection with partially observed genotype data by using copula graphical models’, Journal of the Royal Statistical Society: Series C (Applied Statistics).

    Google Scholar 

  • Bellman, R. & Roth, R. S. (1971), ‘The use of splines with unknown end points in the identification of systems’, Journal of Mathematical Analysis and Applications34(1), 26–33.

    Article  MathSciNet  Google Scholar 

  • Bower, J. M. & Bolouri, H. (2001), Computational Modelling of Genetic and Biochemical Networks, 2nd edn, Massachusetts Institute of Technology.

    Google Scholar 

  • Brunel, N. J-B (2008), ‘Parameter estimation of ODE’s via nonparametric estimators’, Electronic Journal of Statistics2, 1242–1267.

    Article  MathSciNet  Google Scholar 

  • Carlin, B. P. & Louis, T. A. (2000), Bayes and Empirical Bayes Methods for Data Analysis, 2nd edn, Chapman and Hall/CRC.

    Google Scholar 

  • Corominas, R., Yang, X., Lin, G. N., Kang, S., Shen, Y., Ghamsari, L., Broly, M., Rodriguez, M., Tam, S., Trigg, S. A. et al. (2014) , ‘Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism’, Nature communications5.

    Google Scholar 

  • Costanzo, M., VanderSluis, B., Koch, E. N., Baryshnikova, A., Pons, C., Tan, G., Wang, W., Usaj, M., Hanchard, J., Lee, S. D. et al. (2016), ‘A global genetic interaction network maps a wiring diagram of cellular function’, Science353(6306), aaf1420.

    Google Scholar 

  • Dahlhaus, R. & Eichler, M. (2003), Causality and graphical models in time series analysis, in R. S., ed., ‘Highly Structured Stochastic Systems’, Oxford University Press, pp. 115–137.

    Google Scholar 

  • Dattner, I. & Klaassen, C. A. (2013), ‘Estimation in systems of ordinary differential equations linear in the parameters’, arXiv:1305.4126 .

  • Downward, J. (2003), ‘Targeting RAS signalling pathways in cancer therapy’, Nature Reviews Cancer3(1), 11.

    Article  Google Scholar 

  • Eraker, B. (2001), ‘\({MCMC}\) analysis of diffusion models with application to finance’, Journal of Business and Economic Statistics19(2), 177–191.

    Article  MathSciNet  Google Scholar 

  • Érdi, P. & Tóth, J. (1989), Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models, Manchester University Press.

    Google Scholar 

  • Fang, Y., Wu, H. & Zhu, L.-X. (2011), ‘A two-stage estimation method for random coefficient differential equation models with application to longitudinal HIV dynamic data’, Statistica Sinica21(3), 1145–1170.

    Article  MathSciNet  Google Scholar 

  • Gawad, C., Koh, W. & Quake, S. R. (2016), ‘Single-cell genome sequencing: current state of the science’, Nature reviews. Genetics17(3), 175.

    Article  Google Scholar 

  • Gillespie, D. (1992), Markov processes: An introduction for physical scientists., Academic Press.

    Google Scholar 

  • Gillespie, D. T. (1996), ‘The multivariate Langevin and Fokker-Planck equations’, American Journal of Physics64(10), 1246–1257.

    Article  MathSciNet  Google Scholar 

  • Golightly, A. & Wilkinson, D. J. (2005), ‘Bayesian inference for stochastic kinetic models using a diffusion approximation’, Biometrics61(3), 781–788.

    Article  MathSciNet  Google Scholar 

  • Golightly, A. & Wilkinson, D. J. (2008), ‘Bayesian inference for nonlinear multivariate diffusion models observed with error’, Computational Statistics and Data Analysis52(3), 1674–1693.

    Article  MathSciNet  Google Scholar 

  • González, J., Vujačić, I. & Wit, E. (2013), ‘Inferring latent gene regulatory network kinetics’, Statistical applications in genetics and molecular biology12(1), 109–127.

    Article  MathSciNet  Google Scholar 

  • González, J., Vujačić, I. & Wit, E. (2014), ‘Reproducing kernel Hilbert space based estimation of systems of ordinary differential equations’, Pattern Recognition Letters45, 26–32.

    Article  Google Scholar 

  • Granger, C. W. (1988), ‘Causality, cointegration, and control’, Journal of Economic Dynamics and Control12(2-3), 551–559.

    Article  Google Scholar 

  • Grzegorczyk, M. & Husmeier, D. (2011), ‘Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes’, Bioinformatics27(5), 693–699.

    Article  Google Scholar 

  • Grzegorczyk, M., Husmeier, D., Edwards, K. D., Ghazal, P. & Millar, A. J. (2008), ‘Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler’, Bioinformatics24(18), 2071–2078.

    Article  Google Scholar 

  • Gugushvili, S. & Klaassen, C. A. J. (2012), ‘\(\sqrt{n}\)-consistent parameter estimation for systems of ordinary differential equations: bypassing numerical integration via smoothing’, Bernoulli18, 1061–1098.

    Article  MathSciNet  Google Scholar 

  • Gugushvili, S. & Spreij, P. (2012), ‘Parametric inference for stochastic differential equations: a smooth and match approach’, ALEA9(2), 609–635.

    MathSciNet  MATH  Google Scholar 

  • Hilger, R., Scheulen, M. & Strumberg, D. (2002), ‘The Ras-Raf-MEK-ERK pathway in the treatment of cancer’, Oncology Research and Treatment25(6), 511–518.

    Article  Google Scholar 

  • Hooker, G., Ellner, S., Earn, D. et al. (2011), ‘Parameterizing state-space models for infectious disease dynamics by generalized profiling: measles in ontario.’, Journal of the Royal Society, Interface8(60), 961–974.

    Google Scholar 

  • Hornberg, J. J. (2005), Towards integrative tumor cell biology control of \(\text{ MAP }\) kinase signalling, PhD thesis, Vrije Universiteit, Amsterdam.

    Google Scholar 

  • Liang, H. & Wu, H. (2008), ‘Parameter estimation for differential equation models using a framework of measurement error in regression models’, Journal of the American Statistical Association103(484), 1570–1583.

    Article  MathSciNet  Google Scholar 

  • Macaulay, I. C., Ponting, C. P. & Voet, T. (2017), ‘Single-cell multiomics: multiple measurements from single cells’, Trends in Genetics.

    Google Scholar 

  • Michaelis, L. & Menten, M. L. (1913), ‘The kinetics of the inversion effect’, Biochem. Z49, 333–369.

    Google Scholar 

  • Moyal, J. (1949), ‘Stochastic processes and statistical physics.’, Journal of the Royal Statistical Society. Series B11, 150–210.

    Google Scholar 

  • Papoutsakis, E. T. (1984), ‘Equations and calculations for fermentations of butyric acid bacteria’, Biotechnology and bioengineering26(2), 174–187.

    Article  Google Scholar 

  • Purutçuoğlu, V. & Wit, E. (2008), ‘Bayesian inference for the MAPK/ERK pathway by considering the dependency of the kinetic parameters’, Bayesian Analysis3(4), 851–886.

    Article  MathSciNet  Google Scholar 

  • Qi, X. & Zhao, H. (2010), ‘Asymptotic efficiency and finite-sample properties of the generalized profiling estimation of parameters in ordinary differential equations’, The Annals of Statistics38(1), 435–481.

    Article  MathSciNet  Google Scholar 

  • Ramsay, J. O., Hooker, G., Campbell, D. & Cao, J. (2007), ‘Parameter estimation for differential equations: a generalized smoothing approach’, Journal of the Royal Statistical Society: Series B (Statistical Methodology)69(5), 741–796.

    Article  MathSciNet  Google Scholar 

  • Risken, H. (1984), The Fokker-Planck Equation: Methods of Solution and Applications, Springer-Verlag.

    Google Scholar 

  • Roberts, G. O. & Stramer, O. (2001), ‘On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm’, Biometrika88(3), 603–621.

    Article  MathSciNet  Google Scholar 

  • Schwartzman, O. & Tanay, A. (2015), ‘Single-cell epigenomics: techniques and emerging applications’, Nature reviews. Genetics16(12), 716.

    Article  Google Scholar 

  • Sotiropoulos, V. & Kaznessis, Y. (2011), ‘Analytical derivation of moment equations in stochastic chemical kinetics.’, Chemical engineering science66(3), 268–277.

    Google Scholar 

  • Stegle, O., Teichmann, S. A. & Marioni, J. C. (2015), ‘Computational and analytical challenges in single-cell transcriptomics’, Nature reviews. Genetics16(3), 133.

    Article  Google Scholar 

  • Stein, T., Morris, J. S., Davies, C. R., Weber-Hall, S. J., Duffy, M.-A., Heath, V. J., Bell, A. K., Ferrier, R. K., Sandilands, G. P. & Gusterson, B. A. (2004), ‘Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving lbp, cd14 and stat3’, Breast Cancer Res6, R75–R91.

    Google Scholar 

  • Steinke, F. & Schölkopf, B. (2008), ‘Kernels, regularization and differential equations’, Pattern Recognition41(11), 3271–3286.

    Article  Google Scholar 

  • Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, Journal of the Royal Statistical Society. Series B (Methodological) pp. 267–288.

    Google Scholar 

  • Van Kampen, N. G. (1981), Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Varah, J. (1982), ‘A spline least squares method for numerical parameter estimation in differential equations’, SIAM Journal on Scientific and Statistical Computing3(1), 28–46.

    Article  MathSciNet  Google Scholar 

  • Vinciotti, V., Augugliaro, L., Abbruzzo, A. & Wit, E. C. (2016), ‘Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks’, Statistical applications in genetics and molecular biology15(3), 193–212.

    Article  MathSciNet  Google Scholar 

  • Vujačić, I., Dattner, I., González, J. & Wit, E. (2015), ‘Time-course window estimator for ordinary differential equations linear in the parameters’, Statistics and Computing25(6), 1057–1070.

    Article  MathSciNet  Google Scholar 

  • Vujačić, I., Mahmoudi, S. M. & Wit, E. (2016), ‘Generalized Tikhonov regularization in estimation of ordinary differential equations models’, Stat5(1), 132–143.

    Article  MathSciNet  Google Scholar 

  • Wilkinson, D. J. (2006), Stochastic Modelling for Systems Biology, Chapman and Hall/CRC.

    Google Scholar 

  • Wit, E., Heuvel, E. v. d. & Romeijn, J.-W. (2012), “All models are wrong...’: an introduction to model uncertainty’, Statistica Neerlandica66(3), 217–236.

    Google Scholar 

  • Wu, M. & Singh, A. K. (2012), ‘Single-cell protein analysis’, Current Opinion in Biotechnology23(1), 83–88.

    Article  Google Scholar 

  • Xun, X., Cao, J., Mallick, B., Maity, A. & Carroll, R. J. (2013), ‘Parameter estimation of partial differential equation models’, Journal of the American Statistical Association108(503), 1009–1020.

    Article  MathSciNet  Google Scholar 

  • Yin, J. & Li, H. (2011), ‘A sparse conditional Gaussian graphical model for analysis of genetical genomics data’, The Annals of Applied Statistics5(4), 2630.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst C. Wit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wit, E.C. (2019). Introduction to Network Inference in Genomics. In: Biagini, F., Kauermann, G., Meyer-Brandis, T. (eds) Network Science. Springer, Cham. https://doi.org/10.1007/978-3-030-26814-5_7

Download citation

Publish with us

Policies and ethics