Skip to main content

Rheological Testing for Semisolid Foods: Traditional Rheometry

  • Chapter
  • First Online:
Rheology of Semisolid Foods

Part of the book series: Food Engineering Series ((FSES))

Abstract

A review of the literature on the rheology of semisolid foods such as yogurt, reveals significant challenges in acquiring data which adequately reflects the material characteristics of the food. These challenges are due to a number of factors, including the disruption of the structure of the semisolid food during loading on rheology test equipment, the instability of many semisolid foods over time, and the tendency of many semisolid foods to exhibit macroscopic phase separation. Due to these challenges, empirical testing methods are often used instead of fundamental rheology tests, which limits comparison of data. Despite these inherent difficulties, reliable and useful rheology data can be collected on these types of foods if appropriate techniques are used. This data can provide critical information about the food structure, texture, and processing behavior and in some cases can be used to develop predictive models which enable food formulators to more rapidly design semisolid foods with desired behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afonso, I. M., & Maia, J. M. (2000). Rheological monitoring of structure development and rebodying of set-style yoghurt. Applied Rheology, 10, 73–79.

    Article  CAS  Google Scholar 

  • Barnes, H. A. (2000). A handbook of elementary rheology. Dyfed, Wales: University of Wales.

    Google Scholar 

  • Barnes, H. A., & Walters, K. (1985). The yield stress myth. Rheologica Acta, 24, 324–326.

    Article  Google Scholar 

  • Barringer, S. A., et al. (1998). On-line prediction of Bostwick consistency from pressure differential in pipe flow for ketchup and related tomato products. Journal of Food Processing & Preservation, 22, 211–220.

    Article  Google Scholar 

  • Bongenaar, J. J. T., Kossen, N. W. F., Metz, B., & Meijboom, F. (1973). A method for characterizing the rheological properties of viscous fermentation broths. Biotechnology and Bioengineering, 15, 201–206.

    Article  Google Scholar 

  • Bourne, M. (2002). Food texture and viscosity: Concept and measurement. San Diego: Academicn Press.

    Book  Google Scholar 

  • Briggs, J. L., Steffe, J. F., & Ustunol, Z. (1996). Vane method to evaluate the yield stress of frozen ice cream. Journal of Dairy Science, 79, 527–553.

    Article  CAS  Google Scholar 

  • Brown, M. (2010). Sensory characteristics and classification of commercial and experimental plain yogurts. M. S. thesis.:University of Delware.

    Google Scholar 

  • Dannenberg, F., & Kessler, H. G. (1988). Effect of denaturation of β-lactoglobulin on texture properties of set-style nonfat yoghurt. 1. Syneresis. Milchwissenschaft, 43, 632–635.

    CAS  Google Scholar 

  • Doublier, J. L., & Durand, S. (2008). A rheological characterization of semi-solid dairy systems. Food Chemistry, 108(4), 1169–1175.

    Article  CAS  Google Scholar 

  • Ferry, J. D. (1980). Viscoelastic properties of polymers. Canada: Wiley.

    Google Scholar 

  • Foegeding, E. A. B. J., Drake, M. A., & Daubert, C. R. (2003). Sensory and mechanical aspects of cheese texture. International Dairy Journal, 13(8), 585–591.

    Article  Google Scholar 

  • Gunasekaran, S., & Ak, M. M. (2003). Cheese rheology and texture. Boca Raton: CRC Press.

    Google Scholar 

  • Gunasekaran, S., Ko, S., & Xiao, L. (2007). Use of whey protein for encapsulation and controlled delivery applications. Journal of Food Engineering, 83, 31–40.

    Article  CAS  Google Scholar 

  • Halmos, A. L., & Tiu, C. (1981). Liquid foodstuffs exhibiting yield stress and shear degradability. Journal of Texture Studies, 12, 39–46.

    Article  Google Scholar 

  • Haque, A., Richardson, R. K., & Morris, E. R. (2001). Effect of fermentation temperature on the rheology of set and stirred yogurt. Food Hydrocolloids, 15, 593–602.

    Article  CAS  Google Scholar 

  • Harris, P. (1990). Food gels. London: Elsevier Applied Science.

    Book  Google Scholar 

  • Karagül-Yüceer, Y., & Drake, M. A. (2013). Sensory analysis of yogurt. In Manufacturing yogurt and fermented milks (pp. 353–367). UK: Blackwell Publishing.

    Chapter  Google Scholar 

  • Kealy, T. (2006). Application of liquid and solid rheological technologies to the textural characterization of semi-solid foods. Food Research International, 39(3), 265–276.

    Article  CAS  Google Scholar 

  • Krieger, I. M., & Doughherty, T. J. (1959). A mechanism for non-Newtonian flow in suspensions of rigid spheres. Transactions. Society of Rheology, 3, 137–152.

    Article  CAS  Google Scholar 

  • Lam, S., Velikov, K., & Veliv, O. (2014). Pickering stabilization of foams and emulsions with particles of biological origin. Current Opinion in Colloid and Interface Science, 19, 490–500.

    Article  CAS  Google Scholar 

  • Lankes, H., Ozer, B. H., & Robinson, R. K. (1998). The effect of elevated milk solids and incubation temperature on the physical properties of natural yoghurt. Milchwissenschaft, 53(9), 510–513.

    CAS  Google Scholar 

  • Lee, W. J., & Lucey, J. A. (2006). Impact of gelation conditions and structural breakdown on the physical and sensory properties of stirred yogurts. Journal of Dairy Science, 89, 2374–2385.

    Article  CAS  PubMed  Google Scholar 

  • Lee, W. J., & Lucey, J. A. (2010). Formation and physical properties of yogurt. Asian-Australasian Journal of Animal Sciences, 23(9), 1127–1136.

    Article  CAS  Google Scholar 

  • Lucey, J. A. (2004). Cultured dairy products: An overview of their gelation and texture properties. International Journal of Dairy Technology, 57, 77–84.

    Article  CAS  Google Scholar 

  • Lucey, J. A., Munro, P. A., & Singh, H. (1999). Effects of heat treatment and whey protein addition on the rheological properties and structure of acid skim milk gels. International Dairy Journal, 9, 275–279.

    Article  CAS  Google Scholar 

  • Lucey, J. A., Teo, C. T., Munro, P. A., & Singh, H. (1997). Rheological properties at small (dynamic) and large (yield) deformations of acid gels made from heated milk. The Journal of Dairy Research, 64, 591–600.

    Article  CAS  Google Scholar 

  • Muir, D., & Hunter, W. A. (1992). Sensory evaluation of fermented milks: Vocabulary development and the relations between sensory properties and composition and between acceptability and sensory properties. International Journal of Dairy Technology, 45, 73–80.

    Article  Google Scholar 

  • Norn, V. (2015). Emulsifiers in food technology (2nd ed.). Chichester: Wiley.

    Google Scholar 

  • Owen, S. R., Tung, M. A., & Paulson, A. T. (1992). Thermorheological studies of food polymer dispersions. Journal of Food Engineering, 16, 39–53.

    Article  Google Scholar 

  • Ozcan, T. (2013). Determination of yogurt quality by using rheological and textural parameters (pp. 118–122). Singapore: IACSIT Press.

    Google Scholar 

  • Papanastasiou, T. C. (1987). Flows of materials with yield. Journal of Rheology, 31, 385–404.

    Article  CAS  Google Scholar 

  • Ramaswamy, H. S., & Basak, S. (1991). Rheology of stirred yogurts. Journal of Texture Studies, 22(2), 231–241.

    Article  Google Scholar 

  • Rao, M. A. (1999). Rheological behavior of processed fluid and semisolid foods. In Rheology of fluid and semisolid foods: Principles and applications (pp. 223–338). New York: Springer.

    Google Scholar 

  • Rao, M. A. (2006). Influence of food microstructure on food rheology. In Understanding and controlling the microstructure of complex foods (pp. 411–422). Cambridge: Woodhead Publishing Ltd.

    Google Scholar 

  • Rao, M. A., & Cooley, H. J. (1993). Dynamic rheological measurement of structure development in high-methoxyl pectin/fructose gels. Journal of Food Science, 58, 876–879.

    Article  CAS  Google Scholar 

  • Rao, M. A., & Steffe, J. F. (1992). Viscoelastic properties of foods. London: Elsevier Applied Science.

    Google Scholar 

  • Reilly, D. L. (1997). Food rheology. In Chemical engineering in the food industry (pp. 195–232). London: Springer Science + Business Media.

    Chapter  Google Scholar 

  • Renard, D., van deVelde, F., & Visschers, R. W. (2006). The gap between food gel structure, texture and perception. Food Hydrocolloids, 20, 423–431.

    Article  CAS  Google Scholar 

  • Sanchez, C., et al. (1994). Rheological and textural behavior of double cream cheese. II: Effect of curd cooling rate. Journal of Food Engineering, 23(4), 595–608.

    Article  Google Scholar 

  • Skriver, A. (1995). Characterization of stirred yoghurt by rheology, microscopy and sensory analysis. Dissertation. s.l.:The Royal Veterinary and Agricultural University.

    Google Scholar 

  • Skriver, A., Roemer, H., & Qvist, K. B. (1993). Rheological characterization of stirred yoghurt viscometry. Journal of Texture Studies, 24, 185–198.

    Article  Google Scholar 

  • Song, K. W., Kuk, H. A., & Chang, S. G. (2006). Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior. Korea-Australia Rheology Journal, 18(2), 67–81.

    Google Scholar 

  • Spaans, R. D., & Williams, M. C. (1995). Letter to the editor: At last, a true liquid-phase yield stress. Journal of Rheology, 39, 241–246.

    Article  CAS  Google Scholar 

  • Steeneken, P. A. (1989). Rheological properties of aqueous suspensions of swollen starch granules. Carbohydrate Polymers, 11, 23–42.

    Article  CAS  Google Scholar 

  • Steffe, J. F. (1996). Rheological methods in food process engineering. East Lansing: Freeman Press.

    Google Scholar 

  • Tadros, T. F. (2013). Emulsion formation and stability (1st ed.). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

    Book  Google Scholar 

  • Tárrega, A., Durán, L., & Costell, E. (2004). Flow behavior of semi-solid dairy desserts. Effect of temperature. International Dairy Journal, 14(4), 345–353.

    Article  Google Scholar 

  • Tattiyakul, J. (1997). Studies on granule growth kinetics and characteristics of tapioca starch dispersion during gelatinization using particle size analysis and rheological methods. S.l.:Cornell University.

    Google Scholar 

  • Tsardaka, E. D. (1990). Viscoelastic properties and compaction behavior of pharmaceutical particulate materials. s.l.:University of Bath.

    Google Scholar 

  • Tunick, M. H. (2011). Small-strain dynamic rheology of food protein networks. Journal of Agricultural and Food Chemistry, 59, 1481–1486.

    Article  CAS  PubMed  Google Scholar 

  • van Marle, M. E., van den Ende, D., de Kruif, C. G., & Mellema, J. (1999). Steady-shear viscosity of stirred yogurts with varying ropiness. Journal of Rheology, 43, 1643–1662.

    Article  Google Scholar 

  • Winter, H. H., & Mours, M. (1997). Rheology of polymers near liquid-solid transitions. Advances in Polymer Science, 134, 165–234.

    Article  CAS  Google Scholar 

  • Yoo, B., Rao, M. A., & Steffe, J. F. (1995). Yield stress of food dispersions with the vane method at controlled shear rate and shear stress. Journal of Texture Studies, 26, 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith K. Whaley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whaley, J.K., Templeton, C., Anvari, M. (2019). Rheological Testing for Semisolid Foods: Traditional Rheometry. In: Joyner, H. (eds) Rheology of Semisolid Foods. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-27134-3_3

Download citation

Publish with us

Policies and ethics