Skip to main content

The Duistermaat–Heckman Theorem

  • Chapter
  • First Online:
Hamiltonian Group Actions and Equivariant Cohomology

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 963 Accesses

Abstract

There are two formulations of the Duistermaat–Heckman theorem, which is the main result of Heckman’s PhD thesis and is presented in [1]. The first (which comes from the original article [1]) describes how the Liouville measure of a symplectic quotient varies. The second describes an oscillatory integral over a symplectic manifold equipped with a Hamiltonian group action and can be characterized by the slogan “Stationary phase is exact”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, the roots of G are the nonzero weights of its complexified adjoint action. We fix the convention that weights \(\beta \in \mathbf{t}^*\) satisfy \(\beta \in \mathrm{Hom} (\Lambda ^I,{\mathbb Z})\) rather than \(\beta \in \mathrm{Hom} (\Lambda ^I, 2 \pi {\mathbb Z})\) (where \(\Lambda ^I = \mathrm{Ker}(\exp : \mathbf{t}\rightarrow T)\) is the integer lattice). This definition of roots differs by a factor of \(2 \pi \) from the definition used in [10].

References

  1. J.J. Duistermaat, G. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69, 259–268 (1982). Addendum, 72, 153–158 (1983)

    Google Scholar 

  2. V. Guillemin, E. Lerman, S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams (Cambridge University Press, 1996)

    Google Scholar 

  3. V. Guillemin, S. Sternberg, Symplectic Techniques in Physics (Cambridge University Press, 1990)

    Google Scholar 

  4. V.I. Arnold, Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer, 1978)

    Google Scholar 

  5. A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds. Adv. Math. 6, 329–346 (1970)

    Article  MathSciNet  Google Scholar 

  6. F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry (Princeton University Press, 1984)

    Google Scholar 

  7. F. Kirwan, The cohomology rings of moduli spaces of vector bundles over Riemann surfaces. J. Amer. Math. Soc. 5, 853–906 (1992)

    Article  MathSciNet  Google Scholar 

  8. M.F. Atiyah, R. Bott, The Yang–Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. Lond. A 308, 523–615 (1982)

    Article  MathSciNet  Google Scholar 

  9. E. Witten, Two dimensional gauge theories revisited. J. Geom. Phys. 9, 303–368 (1992)

    Article  MathSciNet  Google Scholar 

  10. L.C. Jeffrey, F.C. Kirwan, Localization for nonabelian group actions. Topology 34, 291–327 (1995)

    Article  MathSciNet  Google Scholar 

  11. L.C. Jeffrey, F. Kirwan, Localization and the quantization conjecture. Topology 36, 647–693 (1997)

    Article  MathSciNet  Google Scholar 

  12. L.C. Jeffrey, F.C. Kirwan, Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface. Ann. Math. 148, 109–196 (1998)

    Article  MathSciNet  Google Scholar 

  13. S.K. Martin, Symplectic quotients by a nonabelian group and by its maximal torus, arXiv:math/0001002 (2000)

  14. J. Kalkman, Cohomology rings of symplectic quotients. J. Reine Angew. Math. 458, 37–52 (1995)

    MathSciNet  MATH  Google Scholar 

  15. M. Vergne, Multiplicity formulas for geometric quantization I. Duke Math. J. 82, 143–179 (1996)

    Article  MathSciNet  Google Scholar 

  16. V. Guillemin, S. Sternberg, Geometric quantization and multiplicities of group representations. Invent. Math. 67, 515–538 (1982)

    Article  MathSciNet  Google Scholar 

  17. R. Sjamaar, Symplectic reduction and Riemann–Roch formulas for multiplicities. Bull. Amer. Math. Soc. 33, 327–338 (1996)

    Article  MathSciNet  Google Scholar 

  18. V. Guillemin, J. Kalkman, The Jeffrey–Kirwan localization theorem and residue operations in equivariant cohomology. J. Reine Angew. Math. 470, 123–142 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa C. Jeffrey .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, S., Herman, J., Jeffrey, L.C., van den Hurk, T. (2019). The Duistermaat–Heckman Theorem. In: Hamiltonian Group Actions and Equivariant Cohomology. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-27227-2_10

Download citation

Publish with us

Policies and ethics