Skip to main content

The Reaction and Its Kinetics

  • Chapter
  • First Online:
The Iron(III) Thiocyanate Reaction

Part of the book series: SpringerBriefs in Molecular Science ((BRIESFHISTCHEM))

  • 900 Accesses

Abstract

The rate of a chemical reaction first received serious study in 1850 when the German chemist Ludwig Wilhelmy (1812–1864) studied the rate of the inversion of sucrose using a polarimeter to follow the reaction at different concentrations of sucrose and acid (Laidler in The world of physical chemistry. Oxford University Press, Oxford (1993) [1], Wilhelmy in Poggendorff’s Ann der Phys Und Chem 81(2):413–433, 499–526 (1850) [2]). He measured the rate of change of the sugar concentration to be proportional to both the sugar and acid concentrations. This was the first time that a differential equation \( \left( { - dc/dt = kc} \right) \) was integrated to obtain an expression for ‘c’ as a function of time, assuming the rate was proportional to concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laidler KJ (1993) The world of physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  2. Wilhelmy L (1850) Über das Gesetz, nach welchem die Einwirkung der Säuren auf den Rohrzucker stattfinden. Poggendorff’s Ann der Phys Und Chem 81(2):413–433, 499–526

    Google Scholar 

  3. Bertholet M, de Saint-Gilles PL (1862) Recherches sur les affinites: De la formation et de la décomposition des éthers. Ann De chim et de pharm 65:385–422

    Google Scholar 

  4. Harcourt AV, Esson W (1865) On the laws of connexion between the conditions of a chemical change and its amount. Phil Trans 156:193–222

    Google Scholar 

  5. Harcourt AV, Esson W (1895) On the laws of connexion between the conditions of a chemical change and its amount. Part III. Further researches on the reaction of hydrogen dioxide and hydrogen iodide. Phil Trans A 186:817–895

    Article  CAS  Google Scholar 

  6. Van’t Hoff JH (1884) Études de dynamique chimique. F. Muller, Amsterdam

    Google Scholar 

  7. Laidler KJ (1993) The world of physical chemistry. Oxford University Press, Oxford, p 236

    Google Scholar 

  8. Waage P, Guldberg CM (1864) Forhanlinger: Videnskabs-Selskabet I Christiana (trans: Studies concerning affinity by Abrash HI). In: Bastiansen O (ed) The law of mass action, a centenary volume. Universitetsforlaget, Oslo

    Google Scholar 

  9. Quílez J (2018) A historical/epistemological account of the foundation of the key ideas supporting chemical equilibrium theory. Found Chem. https://doi.org/10.1007/s10698-018-9320-0

    Article  Google Scholar 

  10. Laidler KJ (1993) The world of physical chemistry. Oxford University Press, Oxford, p 234

    Google Scholar 

  11. Quílez J (2018) A historical/epistemological account of the foundation of the key ideas supporting chemical equilibrium theory. Found Chem 23. https://doi.org/10.1007/s10698-018-9320-0

    Article  Google Scholar 

  12. Below JF, Connick RE, Coppel CP (1958) Kinetics of the formation of the ferric thiocyanate complex. J Am Chem Soc 80:2961–2967

    Article  CAS  Google Scholar 

  13. Goodall DM, Harrison PW, Hardy MJ, Kirk CJ (1972) Relaxation kinetics of ferric thiocyanate. J Chem Educ 49(10):675–678

    Article  CAS  Google Scholar 

  14. Gray ET, Workman HJ (1980) An easily constructed and inexpensive stopped-flow system for observing rapid reactions. J Chem Educ 57(10):752–755

    Article  CAS  Google Scholar 

  15. Clark CR (1997) A stopped-flow kinetics experiment for advanced undergraduate laboratories: formation of iron(III) thiocyanate. J Chem Educ 74(10):1214–1217

    Article  CAS  Google Scholar 

  16. de Berg K, Maeder M, Clifford S (2016) A new approach to the equilibrium study of iron(III) thiocyanates which accounts for the kinetic instability of the complexes particularly observable under high thiocyanate concentrations. Inorg Chim Acta 445:155–159

    Article  Google Scholar 

  17. de Berg K, Maeder M, Clifford S (2017) The thermodynamic formation constants for iron(III) thiocyanate complexes at zero ionic strength. Inorg Chim Acta 446:249–253

    Article  Google Scholar 

  18. Hoag CM (2005) Simple and inexpensive computer interface to a durrum stopped-flow apparatus tested using the iron(III)-thiocyanate reaction. J Chem Educ 82(12):1823–1825

    Article  CAS  Google Scholar 

  19. Mieling GE, Pardue HL (1978) Evaluation of a computer-controlled stopped-flow system for fundamental kinetic studies. Anal Chem 50(9):1333–1337

    Article  CAS  Google Scholar 

  20. https://pages.pomona.edu/~wsteinmetz/chem160/stopflow_2002.doc

  21. http://www.jplusconsulting.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin C. de Berg .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Berg, K.C. (2019). The Reaction and Its Kinetics. In: The Iron(III) Thiocyanate Reaction. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-27316-3_7

Download citation

Publish with us

Policies and ethics