Skip to main content

SLIP Model-Based Foot-to-Ground Contact Sensation via Kalman Filter for Miniaturized Quadruped Robots

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11744))

Included in the following conference series:

Abstract

In the condition of torque senseless, especially for miniaturized quadruped robot with simple position-velocity motors, the foot-to-ground contact detection is not easy to be implemented. In this paper, we propose a spring-loaded inverted pendulum (SLIP) model-based algorithm for contact detection without torque sensors. The algorithm combines Kalman filter and SLIP model for foot-to-ground contact detection. Under this detection scheme, the foot-to-ground contact can be detected effectively in a sensor cycle. The proposed algorithm shows the ability of error correction and high robustness in the face of the wrong data of actual sensors and the undesirable fluctuation. Even if the robot is equipped with torque sensors, considering the possibility of sensors damage, the algorithm can be used as a supplement in long-term operation. The feasibility of the proposed algorithm is verified via a simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sotoudehnejad, V., Takhmar, A., Kermani, M.R., Polushin, I.G.: Counteracting modeling errors for sensitive observer-based manipulator collision detection. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4315–4320 (2012)

    Google Scholar 

  2. Manuelli, L., Tedrake, R.: Localizing external contact using proprioceptive sensors: The Contact Particle Filter. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5062–5069 (2016)

    Google Scholar 

  3. Bajo, A., Simaan, N.: Kinematics-based detection and localization of contacts along multisegment continuum robots. IEEE Trans. Rob. 28(2), 291–302 (2012)

    Article  Google Scholar 

  4. Luca, A.D., Albu-Schaffer, A., Haddadin, S., Hirzinger, G.: Collision detection and safe reaction with the DLR-III LIGHTWEIGHT manipulator arm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1623–1630 (2006)

    Google Scholar 

  5. Hwangbo, J., Bellicoso, C.D., Fankhauser, P., Hutter, M.: Probabilistic foot contact estimation by fusing information from dynamics and differential/forward kinematics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3872–3878 (2016)

    Google Scholar 

  6. Camurri, M., et al.: Probabilistic contact estimation and impact detection for state estimation of quadruped robots. IEEE Robot. Autom. Lett. 2(2), 1023–1030 (2017)

    Article  Google Scholar 

  7. Barasuol, V., Buchli, J., Semini, C., Frigerio, M., De Pieri, E.R., Caldwell, D.G.: A reactive controller framework for quadrupedal locomotion on challenging terrain. In: IEEE International Conference on Robotics and Automation, pp. 2554–2561 (2013)

    Google Scholar 

  8. Hyun, D.J., Seok, S., Lee, J., Kim, S.: High speed trot-running: implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah. Int. J. Robot. Res. 33(11), 1417–1445 (2014)

    Article  Google Scholar 

  9. Bledt, G., Wensing, P.M., Ingersoll, S., Kim, S.: Contact model fusion for event-based locomotion in unstructured terrains. In: IEEE International Conference on Robotics and Automation, pp. 1–8 (2018)

    Google Scholar 

  10. Hutter, M., Gehring, C., Höpflinger, M.A., Blösch, M., Siegwart, R.: Toward combining speed, efficiency, versatility, and robustness in an autonomous quadruped. IEEE Trans. Rob. 30(6), 1427–1440 (2014)

    Article  Google Scholar 

  11. Liu, Y., Wensing, P.M., Schmiedeler, J.P., Orin, D.E.: Terrain-blind humanoid walking based on a 3-D actuated dual-SLIP model. IEEE Robot. Autom. Lett. 1(2), 1073–1080 (2016)

    Article  Google Scholar 

  12. Dai, H., Tedrake, R.: Optimizing robust limit cycles for legged locomotion on unknown terrain. In: IEEE Conference on Decision and Control, pp. 1207–1213 (2015)

    Google Scholar 

  13. Wensing, P.M., Orin, D.E.: High-speed humanoid running through control with a 3D-SLIP model. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5134–5140 (2013)

    Google Scholar 

  14. Piovan, G., Byl, K.: Approximation and control of the SLIP model dynamics via partial feedback linearization and two-element leg actuation strategy. IEEE Trans. Rob. 32(2), 399–412 (2016)

    Article  Google Scholar 

  15. Geyer, H., Seyfarth, A., Blickhan, R.: Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232(3), 315–328 (2005)

    Article  MathSciNet  Google Scholar 

  16. Chen, S.Y.: Kalman filter for robot vision: a survey. IEEE Trans. Industr. Electron. 59(11), 4409–4420 (2012)

    Article  Google Scholar 

  17. Ma, J., Bajracharya, M., Susca, S., Matthies, L., Malchano, M.: Real-time pose estimation of a dynamic quadruped in GPS-denied environments for 24-hour operation. Int. J. Robot. Res. 35(6), 631–653 (2016)

    Article  Google Scholar 

  18. Hurmuzlu, Y., Marghitu, D.B.: Rigid body collisions of planar kinematic chains with multiple contact point. Int. J. Robot. Res. 13(1), 82–92 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Sun, H., Wu, D., Chen, X., Wang, C. (2019). SLIP Model-Based Foot-to-Ground Contact Sensation via Kalman Filter for Miniaturized Quadruped Robots. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11744. Springer, Cham. https://doi.org/10.1007/978-3-030-27541-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27541-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27540-2

  • Online ISBN: 978-3-030-27541-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics