Skip to main content

A Latency-Optimized Hash-Based Digital Signature Accelerator for the Tactile Internet

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11733))

Included in the following conference series:

Abstract

Tactile Internet as evolution of the Internet of Things will enable real-time interactive applications in industry and society. It requires low latency and security. Security comprises encryption and data authentication. Digital signatures enable the latter. With the rise of quantum computers, most currently employed digital signature schemes will become unsecure. One promising post-quantum secure algorithm is the eXtended Merkle Signature Scheme (XMSS). It is computationally expensive and thus contradicts low latency requirements. This paper proposes a latency-optimized accelerator for hash-based digital signature processing for the XMSS algorithm. Our architecture improves the latency of signing and verification into the sub-millisecond range.

This research was co-financed by public funding of the state of Saxony/Germany and by the European Social Fund in the framework of the Young Investigators Group “Communication Infrastructures for Attonets in 3D-Chip-Stacks (Atto3D)” under grant number 100339530. This publication contains results of the fast semantics project which is a member of the fast2020 research cluster. It is being financed by the ‘Zwanzig20 - Partnerschaft für Innovation’ initiative of the Federal Ministry for Education and Research of Germany under the grant number FKZ03ZZ0521D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Tactile Internet, August 2014. https://www.itu.int/oth/T2301000023/en

  2. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions, August 2014. https://doi.org/10.6028/NIST.FIPS.202

  3. Status Report on the First Round of the NIST PQC Standardization Process, January 2019. https://doi.org/10.6028/NIST.IR.8240

  4. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_15

    Chapter  Google Scholar 

  5. Bernstein, D.J., Lange, T.: Post-quantum cryptography. Nature 549, 188–194 (2017)

    Article  Google Scholar 

  6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The KECCAK reference, Version 3.0., January 2011. http://keccak.noekeon.org/Keccak-reference-3.0.pdf

  7. Buchmann, J., Dahmen, E., Szydlo, M.: Hash-based digital signature schemes. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_3

    Chapter  Google Scholar 

  8. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure signature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_8

    Chapter  Google Scholar 

  9. Elmohr, M.A., Saleh, M.A., Eissa, A.S., Ahmed, K.E., Farag, M.M.: Hardware implementation of a SHA-3 application-specific instruction set processor. In: 2016 28th International Conference on Microelectronics (ICM), pp. 109–112, December 2016

    Google Scholar 

  10. Fettweis, G.P.: The tactile internet: applications and challenges. IEEE Veh. Technol. Mag. 9(1), 64–70 (2014)

    Article  Google Scholar 

  11. Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: XMSS: extended Merkle signature scheme. RFC 8391, May 2018. https://tools.ietf.org/html/rfc8391

  12. Huelsing, A., Rijneveld, J.: Implementation of XMSS and XMSSMT as specified in draft-itrf-cfrg-xmss-hash-based-signatures-12. Technical report, January 2018. https://huelsing.net

  13. Knezevic, M., et al.: Fair and consistent hardware evaluation of fourteen round two SHA-3 candidates. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(5), 827–840 (2012)

    Article  Google Scholar 

  14. McGrew, D., Curcio, M., Fluhrer, S.: Hash-Based Signatures. Internet-Draft draft-mcgrew-hash-sigs-13, Internet Engineering Task Force, September 2018. https://datatracker.ietf.org/doc/html/draft-mcgrew-hash-sigs-13. work in Progress

  15. de Oliveira, A.K.D.S., Lopez, J., Cabral, R.: High performance of hash-based signature schemes. Int. J. Adv. Comput. Sci. Appl. 8(3), 421–432 (2017)

    Google Scholar 

  16. Simsek, M., Aijaz, A., Dohler, M., Sachs, J., Fettweis, G.: 5G-enabled tactile internet. IEEE J. Sel. Areas Commun. 34(3), 460–473 (2016)

    Article  Google Scholar 

  17. Wang, W., et al.: XMSS and embedded systems - XMSS hardware accelerators for RISC-V. IACR Cryptology ePrint Archive 2018, p. 1225 (2018)

    Google Scholar 

  18. Wang, Y., Shi, Y., Wang, C., Ha, Y.: FPGA-based SHA-3 acceleration on a 32-bit processor via instruction set extension. In: 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 305–308, June 2015

    Google Scholar 

  19. Wong, M.M., Haj-Yahya, J., Sau, S., Chattopadhyay, A.: A new high throughput and area efficient SHA-3 implementation. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5, May 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Pauls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pauls, F., Wittig, R., Fettweis, G. (2019). A Latency-Optimized Hash-Based Digital Signature Accelerator for the Tactile Internet. In: Pnevmatikatos, D., Pelcat, M., Jung, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2019. Lecture Notes in Computer Science(), vol 11733. Springer, Cham. https://doi.org/10.1007/978-3-030-27562-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27562-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27561-7

  • Online ISBN: 978-3-030-27562-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics