Skip to main content

Scale-Adaptive Simulation (SAS) of Dynamic Stall on a Wind Turbine

  • Conference paper
  • First Online:
Progress in Hybrid RANS-LES Modelling

Abstract

Scale-adaptive simulation (SAS) approach is employed to investigate the complex dynamic stall phenomena occurring on a wind turbine blade. The results are compared with the more popular less computationally-expensive unsteady Reynolds-averaged Navier-Stokes (URANS) approach where the latter is validated using three sets of experimental data. The comparison reveals that the two approaches have similar predictions of the instant of the formation/bursting/shedding of the laminar separation bubble (LSB) and dynamic stall vortex (DSV), the size of the LSB and aerodynamic loads during the upstroke. This is while the two approaches exhibit dissimilar predictions of the trailing-edge vortex characteristics, its interaction with the DSV, number of secondary vortices and aerodynamic loads during the downstroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borg, M., Shires, A., Collu, M.: Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part I: aerodynamics. Renew. Sustain. Energy Rev. 39, 1214–1225 (2014)

    Article  Google Scholar 

  2. Tummala, A., Velamati, R.K., Sinha, D.K., Indraja, V., Krishna, V.H.: A review on small scale wind turbines. Renew. Sustain. Energy Rev. 56, 1351–1371 (2016)

    Article  Google Scholar 

  3. Tjiu, W., Marnoto, T., Mat, S., Ruslan, M.H., Sopian, K.: Darrieus vertical axis wind turbine for power generation I: assessment of Darrieus VAWT configurations. Renew. Energy 75, 50–67 (2015)

    Article  Google Scholar 

  4. Rezaeiha, A., Pereira, R., Kotsonis, M.: Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large horizontal axis wind turbine. Renew. Energy 114(B), 904–916 (2017)

    Google Scholar 

  5. Miller, M.A., Duvvuri, S., Brownstein, I., Lee, M., Dabiri, J.O., Hultmark, M.: Vertical-axis wind turbine experiments at full dynamic similarity. J. Fluid Mech. 844, 707–720 (2018)

    Article  Google Scholar 

  6. Zanforlin, S., Deluca, S.: Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed vertical axis Wind Turbines. Energy 148, 179–195 (2018)

    Article  Google Scholar 

  7. Visbal, M.R., Garmann, D.J.: Analysis of dynamic stall on a pitching airfoil using high-fidelity large-eddy simulations. AIAA J. 56(1), 46–63 (2018)

    Article  Google Scholar 

  8. Shamsoddin, S., Porté-Agel, F.: Large Eddy simulation of vertical axis wind turbine wakes. Energies 7(2), 890–912 (2014)

    Article  Google Scholar 

  9. Abkar, M.: Impact of subgrid-scale modeling in actuator-line based large-eddy simulation of vertical-axis wind turbine wakes. Atmosphere 9(7), 257 (2018)

    Article  Google Scholar 

  10. Rezaeiha, A., Montazeri, H., Blocken, B.: Towards optimal aerodynamic design of vertical axis wind turbines: impact of solidity and number of blades. Energy 165(B), 1129–1148 (2018)

    Google Scholar 

  11. Rezaeiha, A., Kalkman, I., Montazeri, H., Blocken, B.: Effect of the shaft on the aerodynamic performance of urban vertical axis wind turbines. Energy Convers. Manag. 149(C), 616–630 (2017)

    Google Scholar 

  12. Rezaeiha, A., Montazeri, H., Blocken, B.: Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: guidelines for azimuthal increment, domain size and convergence. Energy Convers. Manag. 156(C), 301–316 (2018)

    Google Scholar 

  13. Rezaeiha, A., Montazeri, H., Blocken, B.: Characterization of aerodynamic performance of vertical axis wind turbines: impact of operational parameters. Energy Convers. Manag. 169(C), 45–77 (2018)

    Google Scholar 

  14. Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow Turbul. Combust. 85(1), 113–138 (2010)

    Article  Google Scholar 

  15. Rezaeiha, A., Montazeri, H., Blocken, B.: CFD analysis of dynamic stall on vertical axis wind turbines using scale-adaptive simulation (SAS): comparison against URANS and hybrid RANS/LES. Energy Convers. Manag. 196(C), 1282–1298 (2019)

    Google Scholar 

  16. Maleki, S., Burton, D., Thompson, M.C.: Assessment of various turbulence models (ELES, SAS, URANS and RANS) for predicting the aerodynamics of freight train container wagons. J. Wind Eng. Ind. Aerodyn. 170, 68–80 (2017)

    Article  Google Scholar 

  17. Rogowski, K., Hansen, M.O.L., Maroński, R., Lichota, P.: Scale adaptive simulation model for the Darrieus wind turbine. J. Phys: Conf. Ser. 753, 022050 (2016)

    Google Scholar 

  18. Egorov, Y., Menter, F.R., Lechner, R., Cokljat, D.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: application to complex flows. Flow Turbul. Combust. 85(1), 139–165 (2010)

    Article  Google Scholar 

  19. Wang, J., Wang, C., Campagnolo, F., Bottasso, C.L.: Scale-adaptive simulation of wind turbines, and its verification with respect to wind tunnel measurements. Wind. Energy Sci. Discuss., 1–26 (2018)

    Google Scholar 

  20. Rezaeiha, A., Kalkman, I., Blocken, B.: CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: guidelines for minimum domain size and azimuthal increment. Renew. Energy 107, 373–385 (2017)

    Article  Google Scholar 

  21. Blocken, B., Stathopoulos, T., Carmeliet, J.: CFD simulation of the atmospheric boundary layer: wall function problems. Atmos. Environ. 41(2), 238–252 (2007)

    Article  Google Scholar 

  22. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Völker, S.: A correlation-based transition model using local variables—part I: model formulation. J. Turbomach. 128(3), 413–422 (2006)

    Article  Google Scholar 

  23. Menter, F.R., Langtry, R., Völker, S.: Transition modelling for general purpose CFD codes. Flow Turbul. Combust. 77(1–4), 277–303 (2006)

    Article  Google Scholar 

  24. Rezaeiha, A., Montazeri, H., Blocken, B.: On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy 180(C), 838–857 (2019)

    Google Scholar 

  25. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  26. Kato, M., Launder, B.E.: The modelling of turbulent flow around stationary and vibrating square cylinders. In: Ninth Symposium on “Turbulent Shear Flows”. Kyoto, Japan (1993)

    Google Scholar 

  27. You, D., Ham, F., Moin, P.: Discrete conservation principles in large-eddy simulation with application to separation control over an airfoil. Phys. Fluids 20(10), 101515 (2008)

    Article  Google Scholar 

  28. Ferreira, C., van Kuik, G., van Bussel, G., Scarano, F.: Visualization by PIV of dynamic stall on a vertical axis wind turbine. Exp. Fluids 46(1), 97–108 (2009)

    Article  Google Scholar 

  29. Tescione, G., Ragni, D., He, C., Ferreira, C., van Bussel, G.J.W.: Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renew. Energy 70, 47–61 (2014)

    Article  Google Scholar 

  30. Castelli, M.R., Englaro, A., Benini, E.: The Darrieus wind turbine: proposal for a new performance prediction model based on CFD. Energy 36(8), 4919–4934 (2011)

    Article  Google Scholar 

  31. Rezaeiha, A., Kalkman, I., Blocken, B.: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl. Energy 197, 132–150 (2017)

    Article  Google Scholar 

  32. Spalart, P.R.: Strategies for turbulence modeling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the EU Horizon 2020 (H2020-MSCA-ITN-2014), the TU1304 COST ACTION “WINERCOST, the partnership with ANSYS CFD, the NWO and FWO 12M5319N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolrahim Rezaeiha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rezaeiha, A., Montazeri, H., Blocken, B. (2020). Scale-Adaptive Simulation (SAS) of Dynamic Stall on a Wind Turbine. In: Hoarau, Y., Peng, SH., Schwamborn, D., Revell, A., Mockett, C. (eds) Progress in Hybrid RANS-LES Modelling . Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-27607-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27607-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27606-5

  • Online ISBN: 978-3-030-27607-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics