Skip to main content

Toward a Human(oid) Motion Planner

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

  • 2570 Accesses

Abstract

This paper outlines our research activities on motion planning and optimization for humanoid and their applications for human motion analysis and understanding. Starting research that applies geometric and kinematic motion planning technique to humanoid robots, we next explored their motion optimization. Although humanoid robots have an anthropomorphic shape and structure, we have first concentrated on dealing with them as robots with many degrees of freedom (DOFs). Studying humanoid robots started drawing more and more interest in human motions: what are their principles when a human make motions? We investigated optimization of walking paths and whole-body motions involving multiple contacts by using criteria and constraints taking into account some features of human motions. We recently focus on complementary investigation on digital human model and humanoid robotics in order to develop tools for product design by reproducing human behaviors, as well as humanoid robots that can work naturally in human environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayusawa, K., Yoshida, E.: Motion retargeting for humanoid robots based on simultaneous morphing parameter identification and motion optimization. IEEE Trans. Robot. 33(6), 1343–1357 (2017). https://doi.org/10.1109/TRO.2017.2752711

    Article  Google Scholar 

  2. Bouyarmane, K., Kheddar, A.: Multi-contact stances planning for multiple agents. In: Proceedings of the 2011 IEEE International Conference Robotics and Automation, pp. 5246–5253 (2011)

    Google Scholar 

  3. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  4. Defense Advanced Resaerch Projects Agency, “DARPA robotics challenge”. http://www.theroboticschallenge.org/ (2015)

  5. Denny, J., Sandstrm, R., Julian, N., Amato, N.M.: A region-based strategy for collaborative roadmap construction. In: Akin, H.L., Amato, N.M., Isler, V., van der Stappen, A.F. (eds.) Algorithmic Foundations of Robotics XI, Springer Tracts in Advanced Robotics, pp. 125–141. Springer, Berlin (2014)

    Google Scholar 

  6. Devices for Nursing Care Project, R. http://robotcare.jp/ (2013)

  7. Escande, A., Kheddar, A.: Multi-contact acyclic motion planning and experiments on HRP-2 humanoid. In: Harada, K., Yoshida, E., Yokoi, K. (eds.) Motion Planning for Humanoid Robots, pp. 161–179. Springer, Berlin (2010)

    Chapter  Google Scholar 

  8. Esteves, C., Arechavaleta, G., Pettré, J., Laumond, J.P.: Animation planning for virtual characters cooperation. ACM Trans. Graph. 25(2), 319–339 (2006)

    Article  Google Scholar 

  9. Fernando, C.L., Furukawa, M., Kurogi, T., Kamuro, S., Sato, K., Minamizawa, K., Tachi, S.: Design of TELESAR v for transferring bodily consciousness in telexistence. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5112–5118 (2012)

    Google Scholar 

  10. Gleicher, M.: Retargetting motion to new characters. In: Proceedings of the SIGGRAPH ’98, pp. 33–42 (1998)

    Google Scholar 

  11. Harada, K., Yoshida, E., Yokoi, K.: Motion Planning for Humanoid Robots. Springer, Berlin. http://www.springer.com/engineering/robotics/book/978-1-84996-219-3 (2010)

  12. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation, pp. 1620–1626 (2003)

    Google Scholar 

  13. Kuffner, J., Kagami, S., Nishiwaki, K., Inaba, M., Inoue, H.: Dynamically-stable motion planning for humanoid robots. Auton. Robot. 12(1), 105–118 (2002)

    Article  Google Scholar 

  14. Latombe, J.C.: Robot motion planning. Kluwer Academic Publishers, Boston (1991)

    Book  Google Scholar 

  15. LaValle, S.: Planning Algorithm. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  16. Lengagne, S., Vaillant, J., Yoshida, E., Kheddar, A.: Generation of whole-body optimal dynamic multi-contact motions. Int. J. Robot. Res. 32(9–10), 1104–1119 (2013). https://doi.org/10.1177/0278364913478990

    Article  Google Scholar 

  17. Miura, K., Morisawa, M., Nakaoka, S., Harada, K., Kaneko, K., Kajita, S.: Robot Motion Remix based on Motion Capture Data - Towards Human-like Locomotion of Humanoid Robots . In: Proceedings of the 2009 IEEE-RAS International Conference on Humanoid Robots, pp. 596–603 (2009)

    Google Scholar 

  18. Miura, K., Yoshida, E., Kobayashi, Y., Endo, Y., Kanehiro, F., Homma, K., Kajitani, I., Matsumoto, Y., Tanaka, T.: Humanoid robot as an evaluator of assistive devices. In: Proceedings of the 2013 IEEE International Conference Robotics and Automation, pp. 671–677 (2013)

    Google Scholar 

  19. Mombaur, K., Laumond, J.P., Yoshida, E.: An optimal control-based formulation to determine natural locomotor paths for humanoid robots. Adv. Robot. 24(4), 515–535 (2010). https://doi.org/10.1163/016918610X487090

    Article  Google Scholar 

  20. Mombaur, K., Truong, A., Laumond, J.P.: From human to humanoid locomotion - an inverse optimal control approach. Auton. Robot. 28, 369–383 (2010)

    Article  Google Scholar 

  21. Nakaoka, S.: Choreonoid: extensible virtual robot environment built on an integrated gui framework. In: Proceedings of the 2012 IEEE/SICE International Symposium on System Integration, pp. 79–85 (2012)

    Google Scholar 

  22. Nakaoka, S., Nakazawa, A., Yokoi, K., Ikeuchi, K.: Leg motion primitives for a dancing humanoid robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 610–615 (2004)

    Google Scholar 

  23. Siciliano, B., Slotine, J.J.E.: A general framework for managing multiple tasks in highly redundant robotic systems. In: Proceedings of the IEEE International Conference on Advanced Robotics, pp. 1211–1216 (1991)

    Google Scholar 

  24. Soueres, P., Laumond, J.P.: Shortest paths synthesis for a car-like robot. IEEE Trans. Autom. Control. 41(5), 672–688 (1996)

    Article  MathSciNet  Google Scholar 

  25. Tax, M., Flavign, D., Ferr, E.: Human interaction with motion planning algorithm. J. Intell. Robot. Syst., Springer 67(3–4), 285–306 (2012)

    Google Scholar 

  26. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106, 22–57 (2006)

    Article  Google Scholar 

  27. Yoshida, E., Esteves, C., Belousov, I., Laumond, J.P., Sakaguchi, T., Yokoi, K.: Planning 3D collision-free dynamic robotic motion through iterative reshaping. IEEE Trans. Robot. 24(5), 1186–1198 (2008). https://doi.org/10.1109/TRO.2008.2002312

    Article  Google Scholar 

  28. Yoshida, E., Kanoun, O., Esteves, C., Laumond, J.P., Yokoi, K.: Task-driven support polygon reshaping for humanoids. In: Proceedings of 6th IEEE-RAS International Conference on Humanoid Robots, pp. 827–832 (2006)

    Google Scholar 

  29. Yoshida, E., Poirier, M., Laumond, J.P., Kanoun, O., Lamiraux, F., Alami, R., Yokoi, K.: Pivoting based manipulation by a humanoid robot. Auton. Robot. 28(1), 77–88. http://www.springerlink.com/content/d47r262762502912/ (2010). https://doi.org/10.1007/s10514-009-9143-x

  30. Yoshiyasu, Y., Ayusawa, K., Yoshida, E., Matsumoto, Y., Endo, Y.: Forward dynamics simulation of human figures on assistive devices using geometric skin deformation model. In: Proceedings of the 37th IEEE Annual International Conference Engineering in Medicine and Biology Society, pp. 2442–2445 (2015)

    Google Scholar 

Download references

Acknowledgements

This research has been partially supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Fellows P13796 and for Scientific Research 22300071/25820082, and also by METI Robotic Devices for Nursing Care Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoshida, E., Ayusawa, K., Yoshiyasu, Y., Escande, A., Kheddar, A. (2020). Toward a Human(oid) Motion Planner. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_22

Download citation

Publish with us

Policies and ethics