Skip to main content

Overview of Fluid Dynamics and Turbulence

  • Chapter
  • First Online:
Applied Computational Fluid Dynamics and Turbulence Modeling

Abstract

The first part of the chapter provides a review for mass, momentum, and energy conservation, as well as turbulence theory and modeling. Then, the historical development and importance of the Reynolds number (Re) is firmly established, leading to guidelines for calculating Re for many useful engineering geometries. Fully developed laminar and turbulent flow is described, as well as insights regarding the turbulent kinematic viscosity. Finally, isotropic turbulence and Taylor eddy theory are introduced, to lay a foundation regarding their merit and practical applications in CFD modeling; this development culminates in Sect. 3.7, where numerous practical drag reduction and heat transfer applications are described in more detail.

I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about the former I am rather optimistic. —Sir Horace Lamb, circa 1930

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfonsi, G. (2009). Reynolds-averaged Navier-Stokes equations for turbulence modeling. Applied Mechanics Reviews, 62, 1–20.

    Article  Google Scholar 

  • Anderson, J. (1995). Computational fluid dynamics: The basics with applications. New York: McGraw-Hill International Editions.

    Google Scholar 

  • Andersson, B., et al. (2012). Computational fluid dynamic for engineers. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Bae, Y. Y., Kim, E. S., & Kim, M. (2016). Numerical simulation of supercritical fluids with property-dependent turbulent Prandtl number and variable damping function. International Journal of Heat and Mass Transfer, 101, 488–501.

    Article  Google Scholar 

  • Bai, H., & Alam, M. M. (2018). Dependence of square cylinder wake on Reynolds number. Physics of Fluids, 30, 1–20.

    Google Scholar 

  • Bakker, A. (2005). Turbulence models. Applied computational fluid dynamics, Lecture 10, www.bakker.org

  • Bennet, C. O., & Myers, J. E. (1982). Momentum, heat, and mass transfer (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Benzi, R., & Biferale, L. (2015). Homogeneous and isotropic turbulence: A short survey on recent developments. Physics Fluid Dynamics, 161, 1351–1365.

    MathSciNet  MATH  Google Scholar 

  • Bird, R., Stewart, W., & Lightfoot, E. (1960). Transport phenomena (1st ed.). New York: Wiley.

    Google Scholar 

  • Bird, R., Stewart, W., & Lightfoot, E. (2007). Transport phenomena (2nd ed.). New York: Wiley.

    Google Scholar 

  • Blasius, H. (1908). Grenzschichten in Flussigkeiten mit kleiner Reibung. Zeitschrift für Mathematik und Physik, 56(1). Also available in English as, The boundary layers in fluids with little friction. National Advisory Committee for Aeronautics, Technical Memorandum 1256, 1950.

    Google Scholar 

  • Blevins, R. D. (1992). Applied fluid dynamics handbook. Malabar: Kreiger Publishing Company.

    Google Scholar 

  • Boffeta, G., & Musacchio, S. (2017). Chaos and predictability of homogeneous-isotropic turbulence. Physical Review Letters, 119, 054102.

    Article  Google Scholar 

  • Boschung, J., et al. (2016). Streamlines in stationary homogeneous isotropic turbulence and fractal-generated turbulence. Fluid Dynamics Research, 48, 021403.

    Article  MathSciNet  Google Scholar 

  • CFD-online. https://www.cfd-online.com/Wiki/Introduction_to_turbulence/Statistical_analysis/Ensemble_average#Mean_or_ensemble_average. Accessed on 24 June 2017a.

  • CFD-online. https://www.cfd-online.com/Wiki/Turbulence_intensity. Accessed on 4 July 2017b.

  • Chou, P. Y. (1940). On an extension of Reynolds’ method of finding apparent stress and the nature of turbulence. Chinese Journal of Physics, 4, 1–33.

    Google Scholar 

  • Chou, P. Y. (1945). On velocity correlations and the solutions of the equations of turbulent fluctuation. Quarterly of Applied Mathematics, 3, 38–54.

    Article  MathSciNet  MATH  Google Scholar 

  • CoolProp. Welcome to CoolProp. http://coolprop.sourceforge.net. Accessed on 4 July 2017.

  • Dubrulle, B., & Frisch, U. (1991). Eddy viscosity of parity-invariant flow. Physical Review A, 43(10), 5355–5364.

    Article  MathSciNet  Google Scholar 

  • Elyyan, M. A., Rozati, A., & Tafti, D. K. (2008). Investigation of dimpled fins for heat transfer enhancement in compact heat exchangers. International Journal of Heat and Mass Transfer, 51, 2950–2966.

    Article  MATH  Google Scholar 

  • Engineering ToolBox. http://www.engineeringtoolbox.com. Accessed on 22 Aug 2017.

  • Groisman, A., & Steinberg, V. (2000). Elastic turbulence in a polymer solution flow. Nature, 405, 53–55.

    Article  Google Scholar 

  • Gryanik, V. M., et al. (2005). A refinement of the Millionshtchikov quasi-normality hypothesis for convective boundary layer turbulence. Journal of the Atmospheric Sciences, 62, 2632–2638.

    Article  MathSciNet  Google Scholar 

  • Hamba, F. (2005). Nonlocal analysis of the Reynolds stress in turbulent shear flow. Physics of Fluids, 17, 1–10.

    Article  MATH  Google Scholar 

  • Hamlington, P. E., & Dahm W. J. A. (2009). Reynolds stress closure including nonlocal and nonequilibrium effects in turbulent flows. 39th AIAA fluid dynamics conference, AIAA 2009–4162.

    Google Scholar 

  • Hinze, J. (1987). Turbulence (McGraw-Hill classic textbook reissue series). New York: McGraw-Hill.

    Google Scholar 

  • Hirota, M., et al. (2017). Vortex stretching in a homogeneous isotropic turbulence. Journal of Physics: Conference Series, 822, 012041.

    Google Scholar 

  • Hoerner, S. F. (1992). Fluid-dynamic drag. Bakersfield: Hoerner Fluid Dynamics.

    Google Scholar 

  • Holm, D. D., & Kerr, R. M. (2007). Helicity in the formation of turbulence. Physics of Fluids, 19, 025101.

    Article  MATH  Google Scholar 

  • Holman, J. P. (1990). Heat transfer (7th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Kolmogorov, A. N. (1942). Equations of turbulent motion of an incompressible fluid. Izvestiya Akademii Nauk SSSR, Seria fizicheska VI(1–2). (Translated by D. B. Spalding.)

    Google Scholar 

  • Lemmon, E., Huber M., McLinden M., & REFPROP (2010). Reference fluid thermodynamic and transport properties, NIST Standard Reference Database 23, Version 9.0.

    Google Scholar 

  • Lesieur, M., Metais, O., & Comte, P. (2005). Large-eddy simulations of turbulence. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Lumley, J. L. (1970). Toward a turbulent constitutive relation. Journal of Fluid Mechanics, 41(Part 2), 413–434.

    Article  Google Scholar 

  • Mazumdar, H. P., & Mamaloukas C. (2012). On Millionshtchikov’s zero-fourth cumulant hypothesis applied to turbulence. ATINER’s conference paper series, MAT2012-0103.

    Google Scholar 

  • McNaughton, K., & Sinclair, C. (1966). Submerged jets in short cylindrical flow vessels. Journal of Fluid Mechanics, 25(Part 2), 367–375.

    Article  Google Scholar 

  • Millionshtchikov, M. (1941). On the theory of homogeneous isotropic turbulence. Doklady Akademii Nauk SSSR, 32(9), 615–618.

    Google Scholar 

  • Moradian, N., King, D., & Cheng, S. (2008). The effects of freestream turbulence on the drag coefficient of a sphere. Experimental Thermal and Fluid Science, 33(3), 460–471.

    Article  Google Scholar 

  • Myong, H. K., & Kasagi, N. (1990). A new approach to the improvement of k-ε turbulence model for wall-bounded shear flows. JSME International Journal, 33(1), 63–72.

    Google Scholar 

  • Nakano, T. (1972). A theory of homogeneous, isotropic turbulence of incompressible fluids. Annals of Physics, 73(2), 326–371; Online 2004.

    Article  MathSciNet  MATH  Google Scholar 

  • Peng, S. H., & Davidson, L. (1999). Computation of turbulent buoyant flows in enclosures with low-Reynolds-number k-ω models. International Journal of Heat and Fluid Flow, 20, 172–184.

    Article  Google Scholar 

  • Prandtl, L. (1945). Uber ein neues Formelsystem fur die ausgebildete Turbulenz, (On a new formulation for the fully developed turbulence). Nachrichten der Akademie der Wissenschaften in Gottingen, Mathematisch-Physikalische Klasse.

    Google Scholar 

  • Rayleigh, L. (1892). VIII. on the question of the stability of fluids. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.

    Google Scholar 

  • Rayleigh, L. (1913). Sur la Resistance des Spheres dans l’air en Mouvement”, Comptes Rendus.

    Google Scholar 

  • Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philosophical Transactions of the Royal Society of London, 174. (Can also be obtained through JSTOR, http://www.jstor.org)

  • Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London A, 186, 123–164. (Can also be obtained at http://www.jstor.org/stable/90643).

    Article  MATH  Google Scholar 

  • Rodriguez, S. (2016, July). Next-generation heat transfer surfaces. Sandia National Laboratories, Tracking No. 476209.

    Google Scholar 

  • Rodriguez, S., & Turner D. Z. (2012). Assessment of existing Sierra/Fuego capabilities related to grid-to-rod-fretting (GTRF). Sandia National Laboratories, SAND2012-0530.

    Google Scholar 

  • Rott, N. (1990). Note on the history of the Reynolds number. Annual Review of Fluid Mechanics, 22(1), 1–12.

    Article  MathSciNet  Google Scholar 

  • Schlichting, H. (1979). Boundary layer theory (7th ed.). New York: McGraw-Hill Book Company.

    MATH  Google Scholar 

  • Schlichting, H., & Gersten, K. (2000). Boundary layer theory (8th ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Schmitt, F. G. (2007). About Boussinesq’s turbulent viscosity hypothesis: Historical remarks and a direct evaluation of its validity. Comptes Rendus Mecanique, 335, 617.

    Article  MATH  Google Scholar 

  • Shliomis, M. I., & Morozov, K. I. (1994). Negative viscosity of ferrofluid under alternating magnetic field. Physics of Fluids, 6(8), 2855–2861.

    Article  MATH  Google Scholar 

  • Sivashinsky, G. I., & Frenkel, A. L. (1992). On negative eddy viscosity under conditions of isotropy. Physics of Fluids A, 4(8), 1608–1610.

    Article  MathSciNet  MATH  Google Scholar 

  • Sivashinsky, G., & Yakhot, V. (1985). Negative viscosity effect in large-scale flows. Physics of Fluids, 28(4), 1040.

    Article  MATH  Google Scholar 

  • Sohankar, A. (2006). Flow over a bluff body from moderate to high Reynolds numbers using large eddy simulation. Computers & Fluids, 35, 1154–1168.

    Article  MATH  Google Scholar 

  • Spalart, P. R. (2015). Philosophies and fallacies in turbulence modeling. Progress in Aerospace Sciences, 74, 1–15.

    Article  Google Scholar 

  • Speziale, C. G., & Eringen, A. C. (1981). Nonlocal fluid mechanics description of wall turbulence. Computers and Mathematics with Applications, 7, 27–41.

    Article  MathSciNet  MATH  Google Scholar 

  • Stepanov, R. (2018). Helical bottleneck effect in 3D homogeneous isotropic turbulence. Fluid Dynamics Research, 50, 011412.

    Article  MathSciNet  Google Scholar 

  • Stokes, G. G. (1850). On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society, 9, 1–99.

    Google Scholar 

  • Taylor, G. (1922). Diffusion by continuous movements. Proceedings of the London Mathematical Society, s2–s20(1), 196–212.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, G. (1935a). Statistical theory of turbulence. Royal Society of London, Series A, Mathematical and Physical Sciences. Can also be downloaded from rspa.royalsocietypublishing.org

  • Taylor, G. (1935b). Statistical theory of turbulence II. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 151(873), 444–454.

    Article  Google Scholar 

  • von Karman, T., & Howarth L. (1938). On the statistical theory of isotropic turbulence. Proceedings of the Royal Society of London. Series A, 164. (The title page has “de” Karman, which also means “von” Karman in German, which means “of”).

    Google Scholar 

  • Wang, G., Yang, F., & Zhao, W. (2014). There can be turbulence in microfluidics at low Reynolds number, doi:https://doi.org/10.1039/C3LC51403J, Lab on a Chip.

    Article  Google Scholar 

  • White, F. (1991). Viscous fluid flow (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Wilcox, D. C. (2006 k-𝜔 model). Turbulence modeling for CFD (3rd ed.). La Cañada: DCW Industries, printed on 2006 and 2010.

    Google Scholar 

  • Zhao, C. R., et al. (2017). Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids. Nuclear Engineering and Design, 313, 401–413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodriguez, S. (2019). Overview of Fluid Dynamics and Turbulence. In: Applied Computational Fluid Dynamics and Turbulence Modeling. Springer, Cham. https://doi.org/10.1007/978-3-030-28691-0_2

Download citation

Publish with us

Policies and ethics