Skip to main content

Beneficial Modulation of the Gut Microbiome: Probiotics and Prebiotics

  • Chapter
  • First Online:
How Fermented Foods Feed a Healthy Gut Microbiota

Abstract

The gut microbiota plays a critical role in the overall health of its host. Benefits derived from bacterial members of the gut microbiota can influence host growth, immune response, pathogen colonization, and intestinal physiology. Use of probiotics, prebiotics, and synbiotics are emerging as effective mechanisms to selectively modulate composition and function of the gut microbiota. This chapter introduces the concept of probiotics and prebiotics from a historic perspective, and attempts to answer the fundamental questions of the impact of probiotics and prebiotics on microbiome composition in health versus disease states, colonization of the human gut by probiotics (is it necessary?), and how the food or product matrix impact probiotic delivery and effect. The conclusion of this chapter focuses on the next generation of probiotics: novel species and bacterial consortia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alander, M., Satokari, R., Korpela, R., Saxelin, M., Vilpponen-Salmela, T., Mattila-Sandholm, T., & von Wright, A. (1999). Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Applied and Environmental Microbiology, 65(1), 351–354.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen, S. J., Martinez, E. G., Gregorio, G. V., & Dans, L. F. (2010). Probiotics for treating acute infectious diarrhoea. Cochrane Database of Systematic Reviews, 11, CD003048.

    Google Scholar 

  • Ananta, E., Birkeland, S.-E., Corcoran, B. M., Fitzgerald, G., Hinz, S., Klijn, A., Matto, J., Mercenier, A., Nilsson, U., Saarela, C., Stanton, C., Stahl, U., Suomalainen, T., Vincken, J.-P., Virkajarvi, I., Voragen, F., Wesenfeld, J., Wouters, R., & Knorr, D. (2004). Processing effects on the nutritional advancement of probiotics and prebiotics. Microbial Ecology in Health and Disease, 16(2–3), 113–124.

    Article  CAS  Google Scholar 

  • Atlas, R. M. (1999). Probiotics—Snake oil for the new millennium? Environmental Microbiology, 1(5), 377–382.

    Article  CAS  PubMed  Google Scholar 

  • Azcarate Peril, M. A., Savaiano, D. A., Ritter, A. J., & Klaenhammer, T. (2013). Microbiome alterations of lactose intolerant individuals in response to dietary intervention with galacto-oligosaccharides may help negate symptoms of lactose intolerance. Gastroenterology, 144(5), S-893.

    Article  Google Scholar 

  • Azcarate-Peril, M. A., Altermann, E., Hoover-Fitzula, R. L., Cano, R. J., & Klaenhammer, T. R. (2004). Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Applied and Environmental Microbiology, 70(9), 5315–5322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azcarate-Peril, M. A., Tallon, R., & Klaenhammer, T. R. (2009). Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk. Journal of Dairy Science, 92(3), 870–886.

    Article  CAS  PubMed  Google Scholar 

  • Azcarate-Peril, M. A., Sikes, M., & Bruno-Barcena, J. M. (2011). The intestinal microbiota, gastrointestinal environment and colorectal cancer: A putative role for probiotics in prevention of colorectal cancer? American Journal of Physiology. Gastrointestinal and Liver Physiology, 301(3), G401–G424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azcarate-Peril, M. A., Ritter, A. J., Savaiano, D., Monteagudo-Mera, A., Anderson, C., Magness, S. T., & Klaenhammer, T. R. (2017). Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proceedings of the National Academy of Sciences of the United States of America, 114(3), E367–E375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baharav, E., Mor, F., Halpern, M., & Weinberger, A. (2004). Lactobacillus GG bacteria ameliorate arthritis in Lewis rats. The Journal of Nutrition, 134(8), 1964–1969.

    Article  CAS  PubMed  Google Scholar 

  • Bazanella, M., Maier, T. V., Clavel, T., Lagkouvardos, I., Lucio, M., Maldonado-Gomez, M. X., Autran, C., Walter, J., Bode, L., Schmitt-Kopplin, P., & Haller, D. (2017). Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. The American Journal of Clinical Nutrition, 106(5), 1274–1286.

    CAS  PubMed  Google Scholar 

  • Bezkorovainy, A. (2001). Probiotics: Determinants of survival and growth in the gut. The American Journal of Clinical Nutrition, 73(2 Suppl), 399S–405S.

    Article  CAS  PubMed  Google Scholar 

  • Bindels, L. B., Delzenne, N. M., Cani, P. D., & Walter, J. (2015). Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol, 12(5), 303–310.

    Article  CAS  PubMed  Google Scholar 

  • Bruno-Barcena, J. M., & Azcarate-Peril, M. A. (2015). Galacto-oligosaccharides and colorectal cancer: Feeding our intestinal probiome. Journal of Functional Foods, 12, 92–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno-Barcena, J. M., Azcarate-Peril, M. A., & Hassan, H. M. (2010). Role of antioxidant enzymes in bacterial resistance to organic acids. Applied and Environmental Microbiology, 76(9), 2747–2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruzzese, E., Volpicelli, M., Squeglia, V., Bruzzese, D., Salvini, F., Bisceglia, M., Lionetti, P., Cinquetti, M., Iacono, G., Amarri, S., & Guarino, A. (2009). A formula containing galacto- and fructo-oligosaccharides prevents intestinal and extra-intestinal infections: An observational study. Clinical Nutrition, 28(2), 156–161.

    Article  CAS  PubMed  Google Scholar 

  • Buck, B. L., Azcarate-Peril, M. A., Altermann, E., & Klaenhammer, T. Methods and compositions to modulate adhesion and stress tolerance in bacteria.Google Patents; 2006.

    Google Scholar 

  • Campbell, A. K., Waud, J. P., & Matthews, S. B. (2005). The molecular basis of lactose intolerance. Science Progress, 88(Pt 3), 157–202.

    Article  CAS  PubMed  Google Scholar 

  • Cani, P. D., & de Vos, W. M. (2017). Next-generation beneficial microbes: The case of Akkermansia muciniphila. Frontiers in Microbiology, 8, 1765.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins, M. D., & Gibson, G. R. (1999). Probiotics, prebiotics, and synbiotics: Approaches for modulating the microbial ecology of the gut. The American Journal of Clinical Nutrition, 69(5), 1052S–1057S.

    Article  CAS  PubMed  Google Scholar 

  • Costeloe, K., Bowler, U., Brocklehurst, P., Hardy, P., Heal, P., Juszczak, E., King, A., Panton, N., Stacey, F., Whiley, A., Wilks, M., & Millar, M. R. (2016). A randomised controlled trial of the probiotic Bifidobacterium breve BBG-001 in preterm babies to prevent sepsis, necrotising enterocolitis and death: The Probiotics in Preterm infantS (PiPS) trial. Health Technology Assessment, 20(66), 1–194.

    Article  PubMed  Google Scholar 

  • Crovesy, L., Ostrowski, M., Ferreira, D., Rosado, E. L., & Soares-Mota, M. (2017). Effect of Lactobacillus on body weight and body fat in overweight subjects: A systematic review of randomized controlled clinical trials. International Journal of Obesity, 41(11), 1607–1614.

    Article  CAS  PubMed  Google Scholar 

  • Dalli, S. S., Uprety, K., & Rakshit, S. K. (2017). Industrial production of active probiotics for food enrichment. In Y. H. Roos & Y. D. Livney (Eds.), Engineering foods for bioactives stability and delivery. New York: Springer.

    Google Scholar 

  • Davis, L. M., Martinez, I., Walter, J., Goin, C., & Hutkins, R. W. (2011). Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS One, 6(9), e25200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derrien, M., Vaughan, E. E., Plugge, C. M., & de Vos, W. M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 54(Pt 5), 1469–1476.

    Article  CAS  PubMed  Google Scholar 

  • Desmond, C., Fitzgerald, G. F., Stanton, C., & Ross, R. P. (2004). Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Applied and Environmental Microbiology, 70(10), 5929–5936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forssten, S. D., Korczynska, M. Z., Zwijsen, R. M., Noordman, W. H., Madetoja, M., & Ouwehand, A. C. (2013). Changes in satiety hormone concentrations and feed intake in rats in response to lactic acid bacteria. Appetite, 71, 16–21.

    Article  PubMed  Google Scholar 

  • Frese, S. A., Hutton, A. A., Contreras, L. N., Shaw, C. A., Palumbo, M. C., Casaburi, G., Xu, G., Davis, J. C. C., Lebrilla, C. B., Henrick, B. M., Freeman, S. L., Barile, D., German, J. B., Mills, D. A., Smilowitz, J. T., & Underwood, M. A. (2017). Persistence of supplemented Bifidobacterium longum subsp. infantis EVC001 in breastfed infants. mSphere, 2(6), e00501–e00517.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita, K., Oura, F., Nagamine, N., Katayama, T., Hiratake, J., Sakata, K., Kumagai, H., & Yamamoto, K. (2005). Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum. The Journal of Biological Chemistry, 280(45), 37415–37422.

    Article  CAS  PubMed  Google Scholar 

  • Ganji-Arjenaki, M., & Rafieian-Kopaei, M. (2018). Probiotics are a good choice in remission of inflammatory bowel diseases: A meta analysis and systematic review. Journal of Cellular Physiology, 233(3), 2091–2103.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota—Introducing the concept of prebiotics. Journal of Nutrition, 125(6), 1401–1412.

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg, J. Z., Lytvyn, L., Steurich, J., Parkin, P., Mahant, S., & Johnston, B. C. (2015). Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database of Systematic Reviews, 12, CD004827.

    Google Scholar 

  • Goldin, B., & Gorbach, S. L. (1977). Alterations in fecal microflora enzymes related to diet, age, lactobacillus supplements, and dimethylhydrazine. Cancer, 40(5 Suppl), 2421–2426.

    Article  CAS  PubMed  Google Scholar 

  • Govender, M., Choonara, Y. E., Kumar, P., du Toit, L. C., van Vuuren, S., & Pillay, V. (2014). A review of the advancements in probiotic delivery: Conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech, 15(1), 29–43.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton-Miller, J. M., Gibson, G. R., & Bruck, W. (2003). Some insights into the derivation and early uses of the word ‘probiotic’. The British Journal of Nutrition, 90(4), 845.

    Article  CAS  PubMed  Google Scholar 

  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11(8), 506–514.

    Article  Google Scholar 

  • Holscher, H. D., Faust, K. L., Czerkies, L. A., Litov, R., Ziegler, E. E., Lessin, H., Hatch, T., Sun, S., & Tappenden, K. A. (2012). Effects of prebiotic-containing infant formula on gastrointestinal tolerance and fecal microbiota in a randomized controlled trial. JPEN Journal of Parenteral and Enteral Nutrition, 36(1 Suppl), 95S–105S.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal, S., Nguyen, T. H., Nguyen, T. T., Maischberger, T., & Haltrich, D. (2010). beta-Galactosidase from Lactobacillus plantarum WCFS1: Biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydrate Research, 345(10), 1408–1416.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal, S., Nguyen, T. H., Nguyen, H. A., Maischberger, T., Kittl, R., & Haltrich, D. (2011). Characterization of a heterodimeric GH2 beta-galactosidase from Lactobacillus sakei Lb790 and formation of prebiotic galacto-oligosaccharides. Journal of Agricultural and Food Chemistry, 59(8), 3803–3811.

    Article  CAS  PubMed  Google Scholar 

  • Isolauri, E., Juntunen, M., Rautanen, T., Sillanaukee, P., & Koivula, T. (1991). A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics, 88(1), 90–97.

    CAS  PubMed  Google Scholar 

  • Jabr, F. Do probiotics really work? Scientific American. 2017.

    Google Scholar 

  • Kalliomaki, M., Salminen, S., Arvilommi, H., Kero, P., Koskinen, P., & Isolauri, E. (2001). Probiotics in primary prevention of atopic disease: A randomised placebo-controlled trial. Lancet, 357(9262), 1076–1079.

    Article  CAS  PubMed  Google Scholar 

  • Karczewski, J., Troost, F. J., Konings, I., Dekker, J., Kleerebezem, M., Brummer, R. J., & Wells, J. M. (2010). Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. American Journal of Physiology. Gastrointestinal and Liver Physiology, 298(6), G851–G859.

    Article  CAS  PubMed  Google Scholar 

  • Kekkonen, R. A., Lummela, N., Karjalainen, H., Latvala, S., Tynkkynen, S., Jarvenpaa, S., Kautiainen, H., Julkunen, I., Vapaatalo, H., & Korpela, R. (2008). Probiotic intervention has strain-specific anti-inflammatory effects in healthy adults. World Journal of Gastroenterology, 14(13), 2029–2036.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, B., Yin, X., Griffey, S. M., & Marco, M. L. (2015). Attenuation of colitis by Lactobacillus casei BL23 is dependent on the dairy delivery matrix. Applied and Environmental Microbiology, 81(18), 6425–6435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Lin, S., Vanhoutte, P. M., Woo, C. W., & Xu, A. (2016). Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe−/− mice. Circulation, 133(24), 2434–2446.

    Article  CAS  PubMed  Google Scholar 

  • Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: Growth-promoting factors produced by microorganisms. Science, 147(3659), 747–748.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Hu, P., Du, X., Zhou, T., & Pei, X. (2013). Lactobacillus rhamnosus GG supplementation for preventing respiratory infections in children: A meta-analysis of randomized, placebo-controlled trials. Indian Pediatrics, 50(4), 377–381.

    Article  PubMed  Google Scholar 

  • LoCascio, R. G., Desai, P., Sela, D. A., Weimer, B., & Mills, D. A. (2010). Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization. Applied and Environmental Microbiology, 76(22), 7373–7381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maischberger, T., Leitner, E., Nitisinprasert, S., Juajun, O., Yamabhai, M., Nguyen, T. H., & Haltrich, D. (2010). Beta-galactosidase from Lactobacillus pentosus: Purification, characterization and formation of galacto-oligosaccharides. Biotechnology Journal, 5(8), 838–847.

    Article  CAS  PubMed  Google Scholar 

  • Metchnikoff, I. I., & Mitchell, P. (2004). Prolongation of life: Optimistic studies. New York: Springer.

    Google Scholar 

  • Monteagudo-Mera, A., Arthur, J. C., Jobin, C., Keku, T. O., Bruno Barcena, J. M., & Azcarate-Peril, M. A. (2016). High purity galacto-oligosaccharides enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome. Beneficial Microbes, 3, 1–18.

    Google Scholar 

  • Nguyen, T. H., Splechtna, B., Steinbock, M., Kneifel, W., Lettner, H. P., Kulbe, K. D., & Haltrich, D. (2006). Purification and characterization of two novel beta-galactosidases from Lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 54(14), 4989–4998.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, T. H., Splechtna, B., Krasteva, S., Kneifel, W., Kulbe, K. D., Divne, C., & Haltrich, D. (2007). Characterization and molecular cloning of a heterodimeric beta-galactosidase from the probiotic strain Lactobacillus acidophilus R22. FEMS Microbiology Letters, 269(1), 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, T. T., Nguyen, H. A., Arreola, S. L., Mlynek, G., Djinovic-Carugo, K., Mathiesen, G., Nguyen, T. H., & Haltrich, D. (2012). Homodimeric beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: Expression in Lactobacillus plantarum and biochemical characterization. Journal of Agricultural and Food Chemistry, 60(7), 1713–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimoto, M., & Kitaoka, M. (2007). Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Applied and Environmental Microbiology, 73(20), 6444–6449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Toole, P. W., Marchesi, J. R., & Hill, C. (2017). Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nature Microbiology, 2, 17057.

    Article  PubMed  CAS  Google Scholar 

  • Oozeer, R., Leplingard, A., Mater, D. D., Mogenet, A., Michelin, R., Seksek, I., Marteau, P., Dore, J., Bresson, J. L., & Corthier, G. (2006). Survival of Lactobacillus casei in the human digestive tract after consumption of fermented milk. Applied and Environmental Microbiology, 72(8), 5615–5617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrof, E. O., Gloor, G. B., Vanner, S. J., Weese, S. J., Carter, D., Daigneault, M. C., Brown, E. M., Schroeter, K., & Allen-Vercoe, E. (2013). Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome, 1(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeiler, E. A., Azcarate-Peril, M. A., & Klaenhammer, T. R. (2006). Characterization of a two-component regulatory system implicated in the bile tolerance of Lactobacillus acidophilus NCFM. Journal of Animal Science, 84, 181–181.

    Google Scholar 

  • Pfeiler, E. A., Azcarate-Peril, M. A., & Klaenhammer, T. R. (2007). Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. Journal of Bacteriology, 189(13), 4624–4634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips, M., Kailasapathy, K., & Tran, L. (2006). Viability of commercial probiotic cultures (L. acidophilus, Bifidobacterium sp., L. casei, L. paracasei and L. rhamnosus) in cheddar cheese. International Journal of Food Microbiology, 108(2), 276–280.

    Article  CAS  PubMed  Google Scholar 

  • Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., Chilloux, J., Ottman, N., Duparc, T., Lichtenstein, L., Myridakis, A., Delzenne, N. M., Klievink, J., Bhattacharjee, A., van der Ark, K. C., Aalvink, S., Martinez, L. O., Dumas, M. E., Maiter, D., Loumaye, A., Hermans, M. P., Thissen, J. P., Belzer, C., de Vos, W. M., & Cani, P. D. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 23(1), 107–113.

    Article  CAS  PubMed  Google Scholar 

  • Puebla-Barragan, S., & Reid, G. (2019). Forty-five-year evolution of probiotic therapy. Microbial Cell, 6(4), 184–196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reid, G., Sanders, M. E., Gaskins, H. R., Gibson, G. R., Mercenier, A., Rastall, R., Roberfroid, M., Rowland, I., Cherbut, C., & Klaenhammer, T. R. (2003). New scientific paradigms for probiotics and prebiotics. Journal of Clinical Gastroenterology, 37(2), 105–118.

    Article  PubMed  Google Scholar 

  • Rettger, L. F., & Cheplin, H. A. (1921). Treatise on the transformation of the intestinal flora: With special reference to the implantation of Bacillus acidophilus (Vol. 13). Yale University Press.

    Google Scholar 

  • Robert, S., & Steidler, L. (2014). Recombinant Lactococcus lactis can make the difference in antigen-specific immune tolerance induction, the Type 1 Diabetes case. Microbial Cell Factories, 13(Suppl 1), S11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvini, F., Riva, E., Salvatici, E., Boehm, G., Jelinek, J., Banderali, G., & Giovannini, M. (2011). A specific prebiotic mixture added to starting infant formula has long-lasting bifidogenic effects. The Journal of Nutrition, 141(7), 1335–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders, M. E., & Marco, M. L. (2010). Food formats for effective delivery of probiotics. Annual Review of Food Science and Technology, 1, 65–85.

    Article  PubMed  Google Scholar 

  • Scalabrin, D. M., Mitmesser, S. H., Welling, G. W., Harris, C. L., Marunycz, J. D., Walker, D. C., Bos, N. A., Tolkko, S., Salminen, S., & Vanderhoof, J. A. (2012). New prebiotic blend of polydextrose and galacto-oligosaccharides has a bifidogenic effect in young infants. Journal of Pediatric Gastroenterology and Nutrition, 54(3), 343–352.

    Article  CAS  PubMed  Google Scholar 

  • Seo, M., Heo, J., Yoon, J., Kim, S. Y., Kang, Y. M., Yu, J., Cho, S., & Kim, H. (2017). Methanobrevibacter attenuation via probiotic intervention reduces flatulence in adult human: A non-randomised paired-design clinical trial of efficacy. PLoS One, 12(9), e0184547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seregin, S. S., Golovchenko, N., Schaf, B., Chen, J., Eaton, K. A., & Chen, G. Y. (2017a). NLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury. Mucosal Immunology, 10(2), 434–445.

    Article  CAS  PubMed  Google Scholar 

  • Seregin, S. S., Golovchenko, N., Schaf, B., Chen, J., Pudlo, N. A., Mitchell, J., Baxter, N. T., Zhao, L., Schloss, P. D., Martens, E. C., Eaton, K. A., & Chen, G. Y. (2017b). NLRP6 protects Il10(-/-) mice from colitis by limiting colonization of Akkermansia muciniphila. Cell Reports, 19(4), 733–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan, V. M., Sleator, R. D., Hill, C., & Fitzgerald, G. F. (2007). Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiology, 153(Pt 10), 3563–3571.

    Article  CAS  PubMed  Google Scholar 

  • Simon, M. C., Strassburger, K., Nowotny, B., Kolb, H., Nowotny, P., Burkart, V., Zivehe, F., Hwang, J. H., Stehle, P., Pacini, G., Hartmann, B., Holst, J. J., MacKenzie, C., Bindels, L. B., Martinez, I., Walter, J., Henrich, B., Schloot, N. C., & Roden, M. (2015). Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: A proof of concept. Diabetes Care, 38(10), 1827–1834.

    Article  CAS  PubMed  Google Scholar 

  • Sipailiene, A., & Petraityte, S. (2017). Encapsulation of probiotics: Proper selection of the probiotic strain and the influence of encapsulation technology and materials on the viability of encapsulated microorganisms. Probiotics Antimicrob Proteins, 10(1), 1–10.

    Article  CAS  Google Scholar 

  • Staudacher, H. M., Lomer, M. C. E., Farquharson, F. M., Louis, P., Fava, F., Franciosi, E., Scholz, M., Tuohy, K. M., Lindsay, J. O., Irving, P. M., & Whelan, K. (2017). A diet low in FODMAPs reduces symptoms in patients with irritable bowel syndrome and a probiotic restores bifidobacterium species: A randomized controlled trial. Gastroenterology, 153(4), 936–947.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, S., Anzawa, D., Takami, K., Ishizuka, A., Mawatari, T., Kamikado, K., Sugimura, H., & Nishijima, T. (2016). Effect of Bifidobacterium animalis ssp. lactis GCL2505 on visceral fat accumulation in healthy Japanese adults: A randomized controlled trial. Bioscience of Microbiota, Food and Health, 35(4), 163–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tannock, G. W., Lawley, B., Munro, K., Gowri Pathmanathan, S., Zhou, S. J., Makrides, M., Gibson, R. A., Sullivan, T., Prosser, C. G., Lowry, D., & Hodgkinson, A. J. (2013). Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk. Applied and Environmental Microbiology, 79(9), 3040–3048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, A. L., Monteagudo-Mera, A., Cadenas, M. B., Lampl, M. L., & Azcarate-Peril, M. A. (2015). Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Frontiers in Cellular and Infection Microbiology, 5, 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toscano, M., De Grandi, R., Miniello, V. L., Mattina, R., & Drago, L. (2017a). Ability of Lactobacillus kefiri LKF01 (DSM32079) to colonize the intestinal environment and modify the gut microbiota composition of healthy individuals. Digestive and Liver Disease, 49(3), 261–267.

    Article  PubMed  Google Scholar 

  • Toscano, M., De Grandi, R., Stronati, L., De Vecchi, E., & Drago, L. (2017b). Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level: A preliminary study. World Journal of Gastroenterology, 23(15), 2696–2704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241.

    Article  CAS  Google Scholar 

  • Ulsemer, P., Toutounian, K., Kressel, G., Goletz, C., Schmidt, J., Karsten, U., Hahn, A., & Goletz, S. (2016). Impact of oral consumption of heat-treated Bacteroides xylanisolvens DSM 23964 on the level of natural TFalpha-specific antibodies in human adults. Beneficial Microbes, 7(4), 485–500.

    Article  CAS  PubMed  Google Scholar 

  • Urbanska, A. M., Bhathena, J., Martoni, C., & Prakash, S. (2009). Estimation of the potential antitumor activity of microencapsulated Lactobacillus acidophilus yogurt formulation in the attenuation of tumorigenesis in Apc(Min/+) mice. Digestive Diseases and Sciences, 54(2), 264–273.

    Article  PubMed  Google Scholar 

  • Wada, J., Ando, T., Kiyohara, M., Ashida, H., Kitaoka, M., Yamaguchi, M., Kumagai, H., Katayama, T., & Yamamoto, K. (2008). Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Applied and Environmental Microbiology, 74(13), 3996–4004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson, D., Sleator, R. D., Hill, C., & Gahan, C. G. (2008). Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract. BMC Microbiology, 8, 176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Westfall, S., Lomis, N., Kahouli, I., Dia, S. Y., Singh, S. P., & Prakash, S. (2017). Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut brain axis. Cellular and Molecular Life Sciences, 74(20), 3769–3787.

    Article  CAS  PubMed  Google Scholar 

  • Yan, F., & Polk, D. B. (2002). Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. The Journal of Biological Chemistry, 277(52), 50959–50965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, F., Cao, H., Cover, T. L., Whitehead, R., Washington, M. K., & Polk, D. B. (2007). Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology, 132(2), 562–575.

    Article  CAS  PubMed  Google Scholar 

  • Yan, F., Liu, L., Dempsey, P. J., Tsai, Y. H., Raines, E. W., Wilson, C. L., Cao, H., Cao, Z., Liu, L., & Polk, D. B. (2013). A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor. The Journal of Biological Chemistry, 288(42), 30742–30751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, E., Sakurama, H., Kiyohara, M., Nakajima, M., Kitaoka, M., Ashida, H., Hirose, J., Katayama, T., Yamamoto, K., & Kumagai, H. (2012). Bifidobacterium longum subsp. infantis uses two different beta-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology, 22(3), 361–368.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, P., & Curtis, N. (2018). The influence of probiotics on vaccine responses—A systematic review. Vaccine, 36(2), 207–213.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Andrea Azcarate-Peril .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azcarate-Peril, M.A. (2019). Beneficial Modulation of the Gut Microbiome: Probiotics and Prebiotics. In: Azcarate-Peril, M., Arnold, R., Bruno-Bárcena, J. (eds) How Fermented Foods Feed a Healthy Gut Microbiota. Springer, Cham. https://doi.org/10.1007/978-3-030-28737-5_13

Download citation

Publish with us

Policies and ethics