Skip to main content

Towards Reverse-Engineering Black-Box Neural Networks

  • Chapter
  • First Online:
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11700))

Abstract

Much progress in interpretable AI is built around scenarios where the user, one who interprets the model, has a full ownership of the model to be diagnosed. The user either owns the training data and computing resources to train an interpretable model herself or owns a full access to an already trained model to be interpreted post-hoc. In this chapter, we consider a less investigated scenario of diagnosing black-box neural networks, where the user can only send queries and read off outputs. Black-box access is a common deployment mode for many public and commercial models, since internal details, such as architecture, optimisation procedure, and training data, can be proprietary and aggravate their vulnerability to attacks like adversarial examples. We propose a method for exposing internals of black-box models and show that the method is surprisingly effective at inferring a diverse set of internal information. We further show how the exposed internals can be exploited to strengthen adversarial examples against the model. Our work starts an important discussion on the security implications of diagnosing deployed models with limited accessibility. The code is available at goo.gl/MbYfsv.

Supported by German Research Foundation (DFG CRC 1223).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://yann.lecun.com/exdb/mnist/.

  2. 2.

    kennen means “to know” in German, and “to dig out” in Korean.

  3. 3.

    https://github.com/pytorch.

References

  1. Ateniese, G., Mancini, L.V., Spognardi, A., Villani, A., Vitali, D., Felici, G.: Hacking smart machines with smarter ones: how to extract meaningful data from machine learning classifiers. Int. J. Secur. Netw. 10(3), 137–150 (2015)

    Article  Google Scholar 

  2. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1721–1730. ACM (2015)

    Google Scholar 

  3. Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM, New York (2017)

    Google Scholar 

  4. Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers. In: Advances in Neural Information Processing Systems, pp. 6967–6976 (2017)

    Google Scholar 

  5. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3449–3457. IEEE (2017)

    Google Scholar 

  6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (2015)

    Google Scholar 

  7. Hayes, J., Danezis, G.: Machine learning as an adversarial service: learning black-box adversarial examples. CoRR abs/1708.05207 (2017)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  9. Hendricks, L.A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.: Generating visual explanations. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_1

    Chapter  Google Scholar 

  10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  11. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)1mb model size. CoRR abs/1602.07360 (2017)

    Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 448–456. PMLR, Lille (2015). http://proceedings.mlr.press/v37/ioffe15.html

    Google Scholar 

  13. Kamruzzaman, S.M., Islam, M.M.: An algorithm to extract rules from artificial neural networks for medical diagnosis problems. CoRR abs/1009.4566 (2010)

    Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  15. Letham, B., Rudin, C., McCormick, T.H., Madigan, D., et al.: Interpretable classifiers using rules and bayesian analysis: building a better stroke prediction model. Ann. Appl. Stat. 9(3), 1350–1371 (2015)

    Article  MathSciNet  Google Scholar 

  16. Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 30:31–30:57 (2018)

    MathSciNet  Google Scholar 

  17. Liu, Y., Chen, X., Liu, C., Song, D.: Delving into transferable adversarial examples and black-box attacks. In: International Conference on Learning Representations (2017)

    Google Scholar 

  18. van der Maaten, L., Hinton, G.: Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  19. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015)

    Google Scholar 

  20. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1765–1773 (2017)

    Google Scholar 

  21. Narodytska, N., Kasiviswanathan, S.P.: Simple black-box adversarial perturbations for deep networks. CoRR abs/1612.06299 (2017)

    Google Scholar 

  22. Neumann, J.: Zur Theorie der Gesellschaftsspiele. Math. Ann. 100, 295–320 (1928). http://eudml.org/doc/159291

    Article  MathSciNet  Google Scholar 

  23. Oh, S.J., Augustin, M., Schiele, B., Fritz, M.: Towards reverse-engineering black-box neural networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  24. Oh, S.J., Fritz, M., Schiele, B.: Adversarial image perturbation for privacy protection a game theory perspective. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1491–1500. IEEE (2017)

    Google Scholar 

  25. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. CoRR abs/1605.07277 (2016)

    Google Scholar 

  26. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519. ACM (2017)

    Google Scholar 

  27. Poursaeed, O., Katsman, I., Gao, B., Belongie, S.: Generative adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4422–4431 (2018)

    Google Scholar 

  28. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

    Google Scholar 

  29. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)

    Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  31. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. CoRR abs/1312.6034 (2013)

    Google Scholar 

  32. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Conference on Learning Representations (2014)

    Google Scholar 

  33. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models via prediction APIs. In: 25th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 16), pp. 601–618 (2016)

    Google Scholar 

  34. Yosinski, J., Clune, J., Nguyen, A.M., Fuchs, T.J., Lipson, H.: Understanding neural networks through deep visualization. CoRR abs/1506.06579 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Joon Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oh, S.J., Schiele, B., Fritz, M. (2019). Towards Reverse-Engineering Black-Box Neural Networks. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, KR. (eds) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science(), vol 11700. Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28954-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28953-9

  • Online ISBN: 978-3-030-28954-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics