Skip to main content

Role of White Biotechnology in 2G Biofuels: Biocatalytic Process Development for the Hydrolysis of Lignocellulosic Biomass

  • Chapter
  • First Online:
Horizons in Bioprocess Engineering

Abstract

In the commercial exploitation of lignocellulosics for biofuels and other value-added chemicals, the biomass is enzymatically degraded to C5 and C6 sugars for further processing to preferred products of choice. But the economics of bioprocessing of biomass is limited by the cost of biocatalysts employed for the hydrolysis of lignocellulosic polymer to sugar monomers besides a corollary of other factors. Therefore, commercialization of these biocatalytic processes still needs various refinements in the existing infrastructure of lignocellulosic biorefinery. This chapter brings together and discusses better strategies to advance the enzymatic hydrolysis , the characteristics of the components involved (substrate and catalysts), substrate–catalyst complex, and its influence on the overall saccharification performance. Further, it also discusses the diversity of microbial-derived cellulases and their synergism for the effective sugar recovery from cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya, S., & Chaudhary, A. (2012). Bioprospecting thermophiles for cellulase production: A review. Brazilian Journal of Microbiology, 43(3), 844–856.

    Article  CAS  Google Scholar 

  • Adebayo, E. A., & Martinez-Carrera, D. (2015). Oyster mushrooms(pleurotus) are useful for untilizing lignocellulosic biomass. African Journal of Biotechnology 14(1), 52–67.

    Google Scholar 

  • Asztalos, A., Daniels, M., Sethi, A., Shen, T., Langan, P., Redondo, A., & Gnanakaran, S. (2012). A coarse-grained model for synergistic action of multiple enzymes on cellulose. Journal of Biotechnology for Biofuels, 5(1), 1–55.

    Google Scholar 

  • Atalla, R. H., & Vanderhart, D. L. (1984). Native cellulose: A composite of two distinct crystalline forms. Journal of Science, 223(4633), 283–285.

    CAS  Google Scholar 

  • Balan, V. (2014). Current challenges in commercially producing biofuels from lignocellulosic biomass. Journal of ISRN Biotechnology, 1–31.

    Google Scholar 

  • Bayer, E. A., Shoham, Y., & Lamed, R. (2006) The cellulase decomposing bacteria and their enzyme systems. In A. Balowes, H. Trurer, M, Dworkin, W. Harder & K. H. Schleifer (Eds.), The Prokaryotes (2nd Edn., pp. 2:578–617, Vol. -I). Springer.

    Google Scholar 

  • Beckham, Gregg T., Dai, Ziyu, Matthews, James F., et al. (2012). Harnessing glycosylation to improve cellulase activity. Journal of Current Opinion in Biotechnology, 23(3), 338–345. https://doi.org/10.1016/j.copbio.2011.11.030.

    Article  CAS  PubMed  Google Scholar 

  • Bisaria, V. S. (1998). Bioprocessing of agro-residues to value added products. In A. M. Martin (Ed.), Bioconversion of waste materials to industrial products (2nd ed., pp. 197–246). UK: Chapman & Hall.

    Chapter  Google Scholar 

  • Bon, E. P. S., & Ferrara, M. A. (2007). Bioethanol production via enzymatichydrolysis of cellulosic biomass on The role of agricultural biotechnologies for production of bioenergy in developing countries. In FAO seminar, Rome (pp. 1–11).

    Google Scholar 

  • Boraston, A. B., McLean, B. W., Kormos, J. M., et al. (1999). Carbohydrate-binding modules: diversity of structure and function. Journal of the Royal Society of Chemistry, 246, 202–211.

    CAS  Google Scholar 

  • Carpita, N., Tierney, M., & Campbell, M. (2001). Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Journal of Plant Molecular Biology, 47, 1–5.

    Article  CAS  Google Scholar 

  • Chanzy, H., Imada, K., & Vuong, R. (1978). Electron diffraction from the primary wall of cotton fibers. Journal of Protoplasma 94(3–4), 299–306.

    Google Scholar 

  • Chanzy, H., Imada, K., Mollard, A., Vuong, R., & Barnoud, F. (1979). Crystallographic aspects of sub-elementary cellulose fibrils occurring in the wall of rose cells cultured in vitro. Journal of Protoplasma, 100(3–4), 303–316.

    Article  CAS  Google Scholar 

  • Charpentier, E., & Doudna, J. A. (2013). Biotechnology: Rewriting a genome. Journal of Nature 495(7439), 50.

    Google Scholar 

  • Collins, Tony, Gerday, Charles, & Feller, Georges. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 29(1), 3–23.

    Article  CAS  Google Scholar 

  • Ding, S. Y., & Himmel, M. E. (2006). The maize primary cell wall microfibril: A new model derived from direct visualization. Journal of Agricultural and Food Chemistry, 54, 597–606.

    Article  CAS  Google Scholar 

  • Dutta, K., Daverey, A., & Lin, J. G. (2014). Evolution retrospective for alternative fules:first to Fourth generation. Journal of Renewable Energy, 69, 114–122.

    Article  CAS  Google Scholar 

  • Ellila, S., Fonseca, L., Uchima, C., Cota, J., et al. (2017). Development of a low-cost cellulase production process using Trichoderma re esei for Brazilian biorefineries. Journal of Biotechnology for Biofuels, 10(30), 1–17.

    Google Scholar 

  • Fan, L. T., Lee, Y.-H., & Beardmore, D. H. (1980). Major chemical and physical features of cellulosic materials as substrates for enzymic hydrolysis. Journal of Advances in Biochemical Engineering, 14, 101–117.

    Article  CAS  Google Scholar 

  • Frazzetto, Giovanni. (2003). White biotechnology. EMBO Reports, 4(9), 835–837.

    Article  CAS  Google Scholar 

  • Ghose, T. K., & Bisaria, V. S. (1979). Studies on the mechanism of enzymatic hydrolysis of cellulosic substances. Journal of Biotechnology and Bioengineering, 21(1), 131–146.

    Article  CAS  Google Scholar 

  • Igarashi, K., Wada, M., & Samejima, M. (2006). Enzymatic kinetics at a solid-liquid interface: Hydrolysis of crystalline celluloses by cellobiohydrolase. Journal of FEBS, 273(13), 2869–2878.

    Google Scholar 

  • Javed, M. R., Noman, M., Shahid, M., et al. (2019). Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Journal of Microbiological Research, 219, 1–11. https://doi.org/10.1016/j.micres.2018.10.010.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Liquan, Zheng, Anqing, Zhao, Zengli, et al. (2016). The comparision of obtaining fermentable sugars from cellulose by enzyme hydrolysis and fast pyrolysis. Journal of Bioresource Technology, 200, 8–13.

    Article  CAS  Google Scholar 

  • Kaplan, A. M., Mandels, M., Pillion, E., et al. (1970). Resistance of weathered cotton cellulose to cellulase action. J Appl. Microbiol, 20(1), 85–93.

    CAS  Google Scholar 

  • Klyosov, A. A. (1988). Cellulases of the third generation. In J. P. Aubert, P. Beguin, & J. Millet (Eds.), Biochemistry and genetics of cellulose degradation (pp. 87–99). London: Academic Press.

    Google Scholar 

  • Kumar, A., Gautam, A., & Dutt, D. (2016). Co-Cultivation of Penicillium sp. AKB-24 and Aspergillus nidulans AKB-25 as a cost-effective method to produce cellulases for the hydrolysis of pearl millet stover. Journal of Fermentation, 2(2), 1–12.

    Google Scholar 

  • Liming, X., & Xueliang, S. (2004). High yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Journal of Bioresource Technology, 91(3), 259–262.

    Article  Google Scholar 

  • Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Journal of Microbiology and Molecular Biology Reviews, 66(3), 506–577.

    Google Scholar 

  • Madadi, M., Tu, Y., & Abbas, A. (2017). Recent status on enzymatic saccharification of lignocellulosic biomass for bioethanol production. Electronic Journal of Biology, 13(2), 135–143.

    Google Scholar 

  • Mansfield, S. D., Mooney, C., & Saddler, J. N. (1999). Substrate and enzyme characteristics that limit cellulose hydrolysis. Journal of Biotechnology Progress 15(5), 804–816.

    Google Scholar 

  • McMillan, J. D. (1994). Pretreatment of lignocellulosic biomass. In M. E. Himmel, J. O. Baker & R. P. Overend, (Eds.), Enzymatic conversion of biomass for fuels production (pp. 292–324). Washington, DC: American Chemical Society.

    Google Scholar 

  • Merino, S. T., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. Journal of Advances in Biochemical Engineering Biotechnology, 108, 95–120.

    CAS  Google Scholar 

  • Mitchell, D. A., Krieger, N., Stuart, D. M., & Pandey, A. (2000). New developments in solid-state fermentation. II. Rational approaches to the design operation and scale-up of bioreactors. Journal of Process Biochemistry 35(10),1211–1225.

    Google Scholar 

  • Modenbach, A. A., & Nokes, S. E. (2013). Enzymatic hydrolysis of biomass at high-solids loadings–A review. Journal of Biomass and Bioenergy, 56, 526–544.

    Google Scholar 

  • Mohan, M., Banerjee, T., & Goud, V. V. (2015). Hydrolysis of bamboo biomass by Subcritical water treatment. Journal of Bioresource Technology 191, 244–252. https://doi.org/10.1016/j.biortech.2015.05.010.

  • Mosier, N. S., Wyman, C., Dale, B., Elander, R., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Journal of Bioresource Technology, 96(6), 673–686.

    Article  CAS  Google Scholar 

  • Narang, S., Sahai, V., & Bisaria, V. S. (2001). Optimization of xylanase production by Melanocarpusalbomyces IIS 68 in solid-state fermentation using response surface methodology. Journal of Bioscience and Bioengineering, 91(4), 425–427.

    Google Scholar 

  • Pino, M. S., RodrĂ­guez-Jasso, R. M., Michelin, M., Flores-Gallegos, A. C., Morales-Rodriguez, R., Teixeira, J. A., & Ruiz, H. A. (2018). Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chemical Engineering Journal, 347, 119–136.

    Google Scholar 

  • Quiroz-Castañeda, R. E., & Folch-Mallol, J. L. (2013). Sustainable-degradation-of-lignocellulosic-biomass-techniques-applications-and-commercialization/hydrolysis-of-biomass-mediated-by-cellulases-for-the-production-of-sugars. Hydrolysis of biomass mediated by cellulases for the production of sugars. In A. Chandel (Ed.), Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization (pp.119–155). Intech Open. https://www.intechopen.com/profiles/76898/anuj-chandel.

  • Sakakibara, A. (1980). A structural model of softwood lignin. Journal of Wood Science and Technology, 14, 89–100.

    Article  CAS  Google Scholar 

  • Tayyab, M., Noman, A., Islam, W., et al. (2018). Bioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: A review. Journal of Applied Ecology and Environmental Research, 16(1), 225–249.

    Article  Google Scholar 

  • Tenkanen, M., & Poutanen, K. (1992). Significance of esterases in degradation of xylans. In J. Visser, M. A. Kusters-Van Someran, G. Beldman, & A. G. J. Voragen (Eds.), Xvlans and xvlanases (pp. 203–212). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Tomme, P., Heriban, V., & Claeyssens, M. (1990). Adsorption of two cellobiohydrolasesfrom Trichoderma reesei to Avicel: evidence for exo synergism and possible loose complex formation. Journal of Biotechnology Letters, 12(7), 525–530.

    Article  CAS  Google Scholar 

  • Walker, L., & Wilson, D. (1991). Enzymatic hydrolysis of cellulose: An overview. Journal of Bioresource Technology 36(1), 3–14.

    Google Scholar 

  • Weiss, N. D., Felby, C., & Thygesen, L. G. (2019). Enzymatic hydrolysis is limited by biomass-water interactions at high solid: improved performance through substrate modifications. Journal of Biotechnology for Biofuels, 12(1), 3. https://doi.org/10.1186/s13068-018-1339-x.

  • Wright, J. D. (1988). Ethanol from biomass by enzymatic hydrolysis. Journal of Chemical Engineering Progress, 84(8), 62–74.

    CAS  Google Scholar 

  • Wright, J. D., Wyman, C. E., & Grohmann, K. (1988). Simultaneous saccharification and fermentation of lignocellulose: Process evaluation. Journal of Applied Biochemistry and Biotechnology, 18(1), 75–90.

    Article  CAS  Google Scholar 

  • Wyman, C. E. (1999). Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment, 24, 189–226.

    Article  Google Scholar 

  • Yu, X., Boa, X., Zhou, C., & Zhang, L. (2018).0 Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose. Journal of Ultrasonics Sonochemistry, 41, 410–418. https://doi.org/10.1016/j.ultsonch2017.09.003.

  • Zhang, X., Qu, T., & Mosier, N. S. et al. (2018). Cellulose modification by recyclable swelling solvents. Journal of Biotechnology for Biofuels, 11, 191.

    Google Scholar 

  • Zhang, Y., Huang, M., Su, J., et al. (2019). Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activitation and metal salt for enhancing enzymatic conversion of lignocellulose: Fungal. Journal of Biotechnology for Biofuels, 12, 12.

    Article  Google Scholar 

  • Zheng, Y., Pan, Z., Zhang, R., Wang, D., Jenkins, B. (2008). Non-ionic surfactants and non-catalytic protein treatment on enzymatic hydrolysis of pretreated creeping wild ryegrass. Journal of Applied Biochemistry and Biotechnology, 146, 231–248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Addepally .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Addepally, U., Thulluri, C., Gandham, V., Palety, K.K., Yerra, K. (2019). Role of White Biotechnology in 2G Biofuels: Biocatalytic Process Development for the Hydrolysis of Lignocellulosic Biomass. In: Pogaku, R. (eds) Horizons in Bioprocess Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-29069-6_11

Download citation

Publish with us

Policies and ethics