Skip to main content

Biofunctional Nanoparticles for Protein Separation, Purification and Detection

  • Chapter
  • First Online:
Horizons in Bioprocess Engineering

Abstract

Proteins are bio-macromolecules of long amino acid chains with several significant applications in living cells. It is the building block of tissues, enzymes, hormones, bones, muscles, cartilage, blood, skin and biological fluids. Proteins in biological fluids exist in combination with cells, DNA, RNA and other proteins. This requires effective separation and purification mechanisms to detect, isolate and characterize specific proteins from biological fluids. Numerous conventional methods are available for separation, purification and detection of proteins. However, these methods are challenged with several drawbacks including low separation efficiency, low purity levels, use of complex separation and purification processes, requirement of stringent purification steps, and lower detection sensitivity in complex biofluids. Application of nanoparticles presents a strategy to address the challenges associated with protein separation , purification and detection . This is due to the unique properties of nanoparticles including enhanced surface area to volume ratio, presence of atoms at the edges of surface, enhanced bioactivity and sensitivity. This chapter presents an overview of different types of nanoparticles used for protein separation , purification and detection applications. In addition, accounts on industrial applications of nanoparticles for protein bioseparation and future reflections are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., et al. (2014). Dendrimers: Synthesis, applications, and properties. Nanoscale Research Letters, 9(1), 247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afsharan, H., Navaeipour, F., Khalilzadeh, B., Tajalli, H., Mollabashi, M., Ahar, M. J., et al. (2016). Highly sensitive electrochemiluminescence detection of p53 protein using functionalized Ru–silica nanoporous@gold nanocomposite. Biosensors & Bioelectronics, 80, 146–153.

    Article  CAS  Google Scholar 

  • Agoston, R., Izake, E. L., Sivanesan, A., Lott, W. B., Sillence, M. & Steel, R. (2016). Rapid isolation and detection of erythropoietin in blood plasma by magnetic core gold nanoparticles and portable Raman spectroscopy. Nanomedicine: Nanotechnology, Biology and Medicine, 12 (3), 633–641.

    Google Scholar 

  • Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A. R., Ali, J. S., et al. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl, 9, 49–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ament, I., Prasad, J., Henkel, A., Schmachtel, S., & Sönnichsen, C. (2012). Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles. Nano Letters, 12(2), 1092–1095.

    Article  CAS  PubMed  Google Scholar 

  • An, Y., Jiang, X., Bi, W., Chen, H., Jin, L., Zhang, S., et al. (2012). Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels. Biosensors & Bioelectronics, 32(1), 224–230.

    Article  CAS  Google Scholar 

  • An, Y., Tang, L., Jiang, X., Chen, H., Yang, M., Jin, L., Zhang, S., Wang, C., & Zhang, W. (2010). A Photoelectrochemical Immunosensor Based on Au‐Doped TiO2 Nanotube Arrays for the Detection of α‐Synuclein. Chemistry—A European Journal, 16 (48), 14439–14446.

    Google Scholar 

  • Araújo, J. E., Lodeiro, C., Capelo, J. L., Rodríguez-González, B., dos Santos, A. A., Santos, H. M., et al. (2015). Novel nanocomposites based on a strawberry-like gold- coated magnetite (Fe@Au) for protein separation in multiple myeloma serum samples. Nano Research, 8(4), 1189–1198.

    Article  CAS  Google Scholar 

  • Atacan, K., Çakıroğlu, B., & Özacar, M. (2016). Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Food Chemistry, 212, 460–468.

    Article  CAS  PubMed  Google Scholar 

  • Babu, P. J., Raichur, A. M., & Doble, M. (2018). Synthesis and characterization of biocompatible carbon-gold (C–Au) nanocomposites and their biomedical applications as an optical sensor for creatinine detection and cellular imaging. Sensors and Actuators B: Chemical, 258, 1267–1278.

    Article  CAS  Google Scholar 

  • Bao, J., Chen, W., Liu, T., Zhu, Y., Jin, P., Wang, L., et al. (2007). Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano, 1(4), 293–298.

    Article  CAS  PubMed  Google Scholar 

  • Bergeron-Sandoval, L.-P., Heris, H. K., Chang, C., Cornell, C. E., Keller, S. L., Hendricks, A. G., Ehrlicher, A. J., Francois, P., Pappu, R. V. & Michnick, S. W. (2018). Endocytosis caused by liquid-liquid phase separation of proteins. bioRxiv, 145664.

    Google Scholar 

  • Bergveld, P. (1991). A critical evaluation of direct electrical protein detection methods. Biosensors & Bioelectronics, 6(1), 55–72.

    Article  CAS  Google Scholar 

  • Bonanni, A., Pividori, M. I., Campoy, S., Barbé, J., & Del Valle, M. (2009). Impedimetric detection of double-tagged PCR products using novel amplification procedures based on gold nanoparticles and Protein G. Analyst, 134(3), 602–608.

    Article  CAS  PubMed  Google Scholar 

  • Brince Paul, K., Kumar, S., Tripathy, S., Vanjari, S. R. K., Singh, V., & Singh, S. G. (2016). A highly sensitive self assembled monolayer modified copper doped zinc oxide nanofiber interface for detection of Plasmodium falciparum histidine-rich protein-2: Targeted towards rapid, early diagnosis of malaria. Biosensors & Bioelectronics, 80, 39–46.

    Article  CAS  Google Scholar 

  • Cao, M., Li, Z., Wang, J., Ge, W., Yue, T., Li, R., et al. (2012). Food related applications of magnetic iron oxide nanoparticles: Enzyme immobilization, protein purification, and food analysis. Trends in Food Science & Technology, 27(1), 47–56.

    Article  CAS  Google Scholar 

  • Cao, R., Bhattacharya, D., Adhikari, B., Li, J., & Cheng, J. (2015). Large-scale model quality assessment for improving protein tertiary structure prediction. Bioinformatics, 31(12), i116–i123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso, A. M., de Oliveira, E. G., Coradini, K., Bruinsmann, F. A., Aguirre, T., Lorenzoni, R., et al. (2019). Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: Skin permeation/penetration and efficacy in wound healing. Materials Science and Engineering C, 96, 205–217.

    Article  CAS  PubMed  Google Scholar 

  • Carneiro, L., & Ward, R. J. (2018). Functionalization of paramagnetic nanoparticles for protein immobilization and purification. Analytical Biochemistry, 540–541, 45–51.

    Article  CAS  PubMed  Google Scholar 

  • Castillo, G., Spinella, K., Poturnayová, A., Šnejdárková, M., Mosiello, L., & Hianik, T. (2015). Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Control, 52, 9–18.

    Article  CAS  Google Scholar 

  • Caucheteur, C., Guo, T., & Albert, J. (2015). Review of plasmonic fiber optic biochemical sensors: Improving the limit of detection. Analytical and Bioanalytical Chemistry, 407(14), 3883–3897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra, H., Reddy, P. J., & Srivastava, S. (2011). Protein microarrays and novel detection platforms. Expert Review of Proteomics, 8(1), 61–79.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C.-C., Chen, C.-Y., Chuang, T.-L., Wu, T.-H., Wei, S.-C., Liao, H., et al. (2016). Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles. Biosensors & Bioelectronics, 78, 200–205.

    Article  CAS  Google Scholar 

  • Chang, Y. K., & Chase, H. A. (1996). Development of operating conditions for protein purification using expanded bed techniques: The effect of the degree of bed expansion on adsorption performance. Biotechnology and Bioengineering, 49(5), 512–526.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, K., Sarkar, S., Jagajjanani Rao, K., & Paria, S. (2014). Core/shell nanoparticles in biomedical applications. Advances in Colloid and Interface Science, 209, 8–39.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan, N., Sharma, S., & Hooda, V. (2018). Improved protein determination assays obtained after substitution of copper sulfate by copper oxide nanoparticles. Analytical Biochemistry, 547, 19–25.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B., Zhao, H., Chen, S., Long, F., Huang, B., Yang, B., et al. (2019). A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater. Chemical Engineering Journal, 356, 69–80.

    Article  CAS  Google Scholar 

  • Chen, F., Zhao, W., Zhang, J., & Kong, J. (2016). Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins. Physical Chemistry Chemical Physics, 18(2), 718–725.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Huang, Z., Meng, H., Zhang, L., Ji, D., Liu, J., et al. (2018a). A facile fluorescence lateral flow biosensor for glutathione detection based on quantum dots-MnO2 nanocomposites. Sensors and Actuators B: Chemical, 260, 770–777.

    Article  CAS  Google Scholar 

  • Chen, S., Liu, P., Su, K., Li, X., Qin, Z., Xu, W., et al. (2018b). Electrochemical aptasensor for thrombin using co-catalysis of hemin/G-quadruplex DNAzyme and octahedral Cu2O–Au nanocomposites for signal amplification. Biosensors & Bioelectronics, 99, 338–345.

    Article  CAS  Google Scholar 

  • Chinen, A. B., Guan, C. M., Ferrer, J. R., Barnaby, S. N., Merkel, T. J., & Mirkin, C. A. (2015). Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chemical Reviews, 115(19), 10530–10574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, J. H., Kim, H. S., Choi, J.-W., Hong, J. W., Kim, Y.-K., & Oh, B.-K. (2013). A novel Au-nanoparticle biosensor for the rapid and simple detection of PSA using a sequence-specific peptide cleavage reaction. Biosensors & Bioelectronics, 49, 415–419.

    Article  CAS  Google Scholar 

  • Cole, J. P., Lessard, J. J., Rodriguez, K. J., Hanlon, A. M., Reville, E. K., Mancinelli, J. P., et al. (2017). Single-chain nanoparticles containing sequence-defined segments: using primary structure control to promote secondary and tertiary structures in synthetic protein mimics. Polymer Chemistry, 8(38), 5829–5835.

    Article  CAS  Google Scholar 

  • Connor, D. M. & Broome, A.-M. (2018) Chapter Seven - Gold Nanoparticles for the Delivery of Cancer Therapeutics, in Broome, A.-M. (ed), Advances in Cancer ResearchAcademic Press, 163–184.

    Google Scholar 

  • Cotin, G., Piant, S., Mertz, D., Felder-Flesch, D., & Begin-Colin, S. (2018) Chapter 2 - Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization, and Application, in Mahmoudi, M. & Laurent, S. (eds), Iron Oxide Nanoparticles for Biomedical ApplicationsElsevier, 43–88.

    Google Scholar 

  • Dadras, A., Naimi-Jamal, M. R., Moghaddam, F. M., & Ayati, S. E. (2018). Suzuki-Miyaura coupling reaction in water in the presence of robust palladium immobilized on modified magnetic Fe3O4 nanoparticles as a recoverable catalyst. Applied Organometallic Chemistry, 32(2), e3993.

    Article  CAS  Google Scholar 

  • Dai, G., Zhong, J., Song, L., Guo, C., Gan, N., & Wu, Z. (2015). Harmful algal bloom removal and eutrophic water remediation by commercial nontoxic polyamine-co-polymeric ferric sulfate-modified soils. Environmental Science and Pollution Research, 22(14), 10636–10646.

    Article  CAS  PubMed  Google Scholar 

  • Daloglu, M. U., Ray, A., Gorocs, Z., Xiong, M., Malik, R., Bitan, G., McLeod, E. & Ozcan, A. On-chip ultraviolet holography for high-throughput nanoparticle and biomolecule detection 2018. International Society for Optics and Photonics.

    Google Scholar 

  • De, M., Rana, S., Akpinar, H., Miranda, O. R., Arvizo, R. R., Bunz, U. H. F., et al. (2009). Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nature Chemistry, 1, 461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Silva, R. T., Mantilaka, M., Ratnayake, S. P., Amaratunga, G. A. J., & de Silva, K. M. N. (2017). Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydrate Polymers, 157, 739–747.

    Article  CAS  PubMed  Google Scholar 

  • Delaforge, E., Cordeiro, T. N., Bernadó, P. & Sibille, N. (2017). Conformational Characterization of Intrinsically Disordered Proteins and Its Biological Significance. Modern Magnetic Resonance, 1–20.

    Google Scholar 

  • Deraedt, C., Melaet, G. r. m., Ralston, W. T., Ye, R., & Somorjai, G. A. (2017a). Platinum and other transition metal nanoclusters (Pd, Rh) stabilized by PAMAM dendrimer as excellent heterogeneous catalysts: application to the methylcyclopentane (MCP) hydrogenative isomerization. Nano letters, 17 (3), 1853–1862.

    Google Scholar 

  • Deraedt, C., Ye, R., Ralston, W. T., Toste, F. D., & Somorjai, G. A. (2017b). Dendrimer-Stabilized Metal Nanoparticles as Efficient Catalysts for Reversible Dehydrogenation/Hydrogenation of N-Heterocycles. Journal of the American Chemical Society, 139(49), 18084–18092.

    Article  CAS  PubMed  Google Scholar 

  • Derkus, B., Emregul, E., Emregul, K. C., & Yucesan, C. (2014). Alginate and alginate-titanium dioxide nanocomposite as electrode materials for anti-myelin basic protein immunosensing. Sensors and Actuators B: Chemical, 192, 294–302.

    Article  CAS  Google Scholar 

  • Dhall, A., & Self, W. (2018). Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications. Antioxidants (Basel, Switzerland), 7(8), 97.

    Google Scholar 

  • Diamente, P. R., Burke, R. D., & van Veggel, F. C. J. M. (2006). Bioconjugation of Ln3+-doped LaF3 nanoparticles to avidin. Langmuir, 22(4), 1782–1788.

    Article  CAS  PubMed  Google Scholar 

  • Diaz, C., Guzmán, J., Jiménez, V. A., & Alderete, J. B. (2018). Partially PEGylated PAMAM dendrimers as solubility enhancers of Silybin. Pharmaceutical Development and Technology, 23(7), 689–696.

    Article  CAS  PubMed  Google Scholar 

  • Duceppe, N., & Tabrizian, M. (2010). Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert opinion on drug delivery, 7(10), 1191–1207.

    Article  CAS  PubMed  Google Scholar 

  • Elbeshehy, E. K. F., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology, 6, 453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elsabahy, M., & Wooley, K. L. (2012). Design of polymeric nanoparticles for biomedical delivery applications. Chemical Society Reviews, 41(7), 2545–2561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, Y., Hu, Q., Yu, X., & Wang, L. (2018). Ultrasensitive electrochemical immunosensor for procalcitonin with signal enhancement based on zinc nanoparticles functionalized ordered mesoporous carbon–silica nanocomposites. Sensors and Actuators B: Chemical, 258, 238–245.

    Article  CAS  Google Scholar 

  • Farzi-Khajeh, H., Jafari, B., Safa, K. D., & Dastmalchi, S. (2019). Magnetic iron oxide nanoparticles modified with vanadate and phosphate salts for purification of alkaline phosphatase from the bovine skim milk. Colloids and Surfaces B: Biointerfaces, 175, 644–653.

    Article  CAS  PubMed  Google Scholar 

  • Feng, X., Deng, C., Gao, M., & Zhang, X. (2018). Facile and easily popularized synthesis of L-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides. Analytical and Bioanalytical Chemistry, 410(3), 989–998.

    Article  CAS  PubMed  Google Scholar 

  • Fortunati, E., Rescignano, N., Botticella, E., La Fiandra, D., Renzi, M., Mazzaglia, A., Torre, L., Kenny, J. M. & Balestra, G. M. (2016) Effect of poly (DL-lactide-co-glycolide) nanoparticles or cellulose nanocrystals-based formulations on Pseudomonas syringae pv. tomato (Pst) and tomato plant development. Journal of Plant Diseases and Protection, 123 (6), 301–310.

    Google Scholar 

  • Fraga García, P., Brammen, M., Wolf, M., Reinlein, S., Freiherr von Roman, M., & Berensmeier, S. (2015). High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Separation and Purification Technology, 150, 29–36.

    Article  CAS  Google Scholar 

  • Franzreb, M., Siemann-Herzberg, M., Hobley, T. J., & Thomas, O. R. (2006). Protein purification using magnetic adsorbent particles. Applied Microbiology and Biotechnology, 70(5), 505–516.

    Article  CAS  PubMed  Google Scholar 

  • Gamal-Eldeen, A. M., Abdel-Hameed, S. A. M., El-Daly, S. M., Abo-Zeid, M. A. M., & Swellam, M. M. (2017). Cytotoxic effect of ferrimagnetic glass-ceramic nanocomposites on bone osteosarcoma cells. Biomedicine & Pharmacotherapy, 88, 689–697.

    Article  CAS  Google Scholar 

  • Gao, F., Du, L., Zhang, Y., Zhou, F., & Tang, D. (2016). A sensitive sandwich-type electrochemical aptasensor for thrombin detection based on platinum nanoparticles decorated carbon nanocages as signal labels. Biosensors & Bioelectronics, 86, 185–193.

    Article  CAS  Google Scholar 

  • Gau, J., Jr., Lan, E. H., Dunn, B., Ho, C.-M. & Woo, J. C. S. (2001) A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosensors and Bioelectronics, 16 (9–12), 745–755.

    Google Scholar 

  • Gawande, M. B., Goswami, A., Asefa, T., Guo, H., Biradar, A. V., Peng, D.-L., et al. (2015). Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 44(21), 7540–7590.

    Article  CAS  PubMed  Google Scholar 

  • Gong, Z.-S., Duan, L.-P., & Tang, A.-N. (2015). Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector. Microchimica Acta, 182(7), 1297–1304.

    Article  CAS  Google Scholar 

  • Greaser, M. L. & Warren, C. M. (2019) Electrophoretic Separation of Very Large Molecular Weight Proteins in SDS Agarose, Electrophoretic Separation of ProteinsSpringer, 203–210.

    Google Scholar 

  • Guihen, E. (2013). Nanoparticles in modern separation science. TrAC Trends in Analytical Chemistry, 46, 1–14.

    Article  CAS  Google Scholar 

  • Guo, H., Li, M., Tu, S., & Sun, H. (2018). Selective binding and magnetic separation of His-tagged proteins using Fe3O4/PAM/NTA-Ni2+ Magnetic Nanoparticles. IOP Conference Series: Materials Science and Engineering, 322, 022017.

    Article  Google Scholar 

  • Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology, 48, 40–50.

    Article  CAS  Google Scholar 

  • Hamelian, M., Zangeneh, M. M., Amisama, A., Varmira, K., & Veisi, H. (2018). Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Applied Organometallic Chemistry, 32(9), e4458.

    Article  CAS  Google Scholar 

  • Hastings, J. F., Han, J. Z. R., Shearer, R. F., Kennedy, S. P., Iconomou, M., Saunders, D. N. & Croucher, D. R. (2018) Dissecting Multi-protein Signaling Complexes by Bimolecular Complementation Affinity Purification (BiCAP). JoVE (Journal of Visualized Experiments) (136), e57109.

    Google Scholar 

  • He, L., Zhang, S., Ji, H., Wang, M., Peng, D., Yan, F., et al. (2016). Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB. Biosensors & Bioelectronics, 79, 553–560.

    Article  CAS  Google Scholar 

  • Heemskerk, A. A. M., Deelder, A. M., & Mayboroda, O. A. (2016). CE–ESI–MS for bottom-up proteomics: Advances in separation, interfacing and applications. Mass Spectrometry Reviews, 35(2), 259–271.

    Article  CAS  PubMed  Google Scholar 

  • Heydari-Bafrooei, E., Amini, M., & Ardakani, M. H. (2016). An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin. Biosensors & Bioelectronics, 85, 828–836.

    Article  CAS  Google Scholar 

  • Huang, J.-Y., Lin, H.-T., Chen, T.-H., Chen, C.-A., Chang, H.-T., & Chen, C.-F. (2018). Signal amplified gold nanoparticles for cancer diagnosis on paper-based analytical devices. ACS Sensors, 3(1), 174–182.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Aguilar, Z. P., Xu, H., Lai, W., & Xiong, Y. (2016). Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosensors & Bioelectronics, 75, 166–180.

    Article  CAS  Google Scholar 

  • Ishak, N. F., Hashim, N. A., Othman, M. H. D., Monash, P., & Zuki, F. M. (2017). Recent progress in the hydrophilic modification of alumina membranes for protein separation and purification. Ceramics International, 43(1), 915–925.

    Article  CAS  Google Scholar 

  • Iwasaki, S., Kawasaki, H. & Iwasaki, Y. (2018). Label-Free Specific Detection and Collection of C-Reactive Protein Using Zwitterionic Phosphorylcholine-Polymer-Protected Magnetic Nanoparticles. Langmuir.

    Google Scholar 

  • Janson, J.-C. (2012) Protein purification: principles, high resolution methods, and applications, 151John Wiley & Sons.

    Google Scholar 

  • Jeevanandam, J., Aing, Y. S., Chan, Y. S., Pan, S. & Danquah, M. K. (2017) Nanoformulation and Application of Phytochemicals as Antimicrobial Agents, Antimicrobial NanoarchitectonicsElsevier, 61–82.

    Google Scholar 

  • Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein journal of nanotechnology, 9(1), 1050–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeevanandam, J., Pal, K., & Danquah, M. K. (2019). Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie, 157, 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Jeevanandam, J., Chan, Y. S., & Danquah, M. K. (2016a). Biosynthesis of Metal and Metal Oxide Nanoparticles. ChemBioEng Reviews, 3(2), 55–67.

    Article  CAS  Google Scholar 

  • Jeevanandam, J., San Chan, Y., & Danquah, M. K. (2016b). Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie, 128, 99–112.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, S., Subbiah, R., Bonaedy, T., Van, S., Park, K., & Yun, K. (2018). Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields. Journal of Cellular Physiology, 233(2), 1168–1178.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, B., Akter, R., Han, O. H., Rhee, C. K., & Rahman, M. A. (2013). Increased Electrocatalyzed Performance through Dendrimer-Encapsulated Gold Nanoparticles and Carbon Nanotube-Assisted Multiple Bienzymatic Labels: Highly Sensitive Electrochemical Immunosensor for Protein Detection. Analytical Chemistry, 85(3), 1784–1791.

    Article  CAS  PubMed  Google Scholar 

  • Jia, G., Cao, Z., Xue, H., Xu, Y., & Jiang, S. (2009). Novel zwitterionic-polymer-coated silica nanoparticles. Langmuir, 25(5), 3196–3199.

    Article  CAS  PubMed  Google Scholar 

  • Jia, Y., Zuo, X., Lou, X., Miao, M., Cheng, Y., Min, X., et al. (2015). Rational Designed Bipolar, Conjugated Polymer-DNA Composite Beacon for the Sensitive Detection of Proteins and Ions. Analytical Chemistry, 87(7), 3890–3894.

    Article  CAS  PubMed  Google Scholar 

  • Jin, J., Liu, T., Li, M., Yuan, C., Liu, Y., Tang, J., et al. (2018). Rapid in situ biosynthesis of gold nanoparticles in living platelets for multimodal biomedical imaging. Colloids and Surfaces B: Biointerfaces, 163, 385–393.

    Article  CAS  PubMed  Google Scholar 

  • Joo, J., Kwon, D., Yim, C., & Jeon, S. (2012). Highly Sensitive Diagnostic Assay for the Detection of Protein Biomarkers Using Microresonators and Multifunctional Nanoparticles. ACS Nano, 6(5), 4375–4381.

    Article  CAS  PubMed  Google Scholar 

  • Junior, C. R. F., de Moura, M. R., & Aouada, F. A. (2017). Synthesis and characterization of intercalated nanocomposites based on poly (methacrylic acid) hydrogel and nanoclay cloisite-Na+ for possible application in agriculture. Journal of Nanoscience and Nanotechnology, 17(8), 5878–5883.

    Article  CAS  Google Scholar 

  • Kathiraven, T., Sundaramanickam, A., Shanmugam, N., & Balasubramanian, T. (2015). Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Applied Nanoscience, 5(4), 499–504.

    Article  CAS  Google Scholar 

  • Khampieng, T., Wongkittithavorn, S., Chaiarwut, S., Ekabutr, P., Pavasant, P., & Supaphol, P. (2018). Silver nanoparticles-based hydrogel: Characterization of material parameters for pressure ulcer dressing applications. Journal of Drug Delivery Science and Technology, 44, 91–100.

    Article  CAS  Google Scholar 

  • Kim, D., Daniel, W. L., & Mirkin, C. A. (2009). Microarray-based multiplexed scanometric immunoassay for protein cancer markers using gold nanoparticle probes. Analytical Chemistry, 81(21), 9183–9187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H., Griffith, T. & Panyam, J. (2019). poly (D, L-lactide-co-glycolide) nanoparticles as a vaccine delivery platform for TLR7/8 agonist-based cancer vaccine. The Journal of pharmacology and experimental therapeutics.

    Google Scholar 

  • Ko, J., Carpenter, E., & Issadore, D. (2016). Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst, 141(2), 450–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch, C., Wabbel, K., Eber, F. J., Krolla-Sidenstein, P., Azucena, C., Gliemann, H., Eiben, S., Geiger, F. & Wege, C. (2015). Modified TMV Particles as Beneficial Scaffolds to Present Sensor Enzymes. Frontiers in Plant Science, 6 (1137).

    Google Scholar 

  • Kulabhusan, P. K., Rajwade, J. M., Sugumar, V., Taju, G., Hameed, A. S. S., & Paknikar, K. M. (2017). Field-Usable lateral flow immunoassay for the rapid detection of white spot syndrome virus (WSSV). PLoS ONE, 12(1), e0169012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, D., Kumar, G. & Agrawal, V. (2018) Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol Res, 117 (2), 377–389.

    Google Scholar 

  • Lee, I. S., Lee, N., Park, J., Kim, B. H., Yi, Y.-W., Kim, T., et al. (2006). Ni/NiO Core/Shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. Journal of the American Chemical Society, 128(33), 10658–10659.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Hernandez, P., Lee, J., Govorov, A. O., & Kotov, N. A. (2007). Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nature Materials, 6(4), 291.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. H., Yoon, K. H., Hwang, K. S., Park, J., Ahn, S., & Kim, T. S. (2004). Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. Biosensors & Bioelectronics, 20(2), 269–275.

    Article  CAS  Google Scholar 

  • Lee, M., & Fauchet, P. M. (2007). Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Optics Express, 15(8), 4530–4535.

    Article  CAS  PubMed  Google Scholar 

  • Leng, Y., Sun, K., Chen, X., & Li, W. (2015). Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chemical Society Reviews, 44(15), 5552–5595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, C., Ma, J., Fan, Q., Tao, Y., & Li, G. (2016a). Dynamic light scattering (DLS)-based immunoassay for ultra-sensitive detection of tumor marker protein. Chemical Communications, 52(50), 7850–7853.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Fan, Y., Shen, M., Bányai, I., & Shi, X. (2019a). Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. Journal of Materials Chemistry B, 7(2), 277–285.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Liang, H., Liu, J. & Wang, Z. (2018). Poly (amidoamine)(PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. International journal of pharmaceutics.

    Google Scholar 

  • Li, J., Skeete, Z., Shan, S., Yan, S., Kurzatkowska, K., Zhao, W., et al. (2015). Surface enhanced raman scattering detection of cancer biomarkers with bifunctional nanocomposite probes. Analytical Chemistry, 87(21), 10698–10702.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Liu, C., & Li, H. (2016b). Induction of endogenous reactive oxygen species in mitochondria by fullerene-based photodynamic therapy. Journal of Nanoscience and Nanotechnology, 16(6), 5592–5597.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Zhang, L. M., Wei, X. P. & Li, J. P. (2013). A sensitive and renewable chlortoluron molecularly imprinted polymer sensor based on the gate-controlled catalytic electrooxidation of H2O2 on magnetic nano-NiO. Electroanalysis (N. Y.), 25 (5), 1286–1293.

    Google Scholar 

  • Li, X., Zhu, L., Zhou, Y., Yin, H., & Ai, S. (2017). Enhanced Photoelectrochemical Method for Sensitive Detection of Protein Kinase A Activity Using TiO2/g–C3N4, PAMAM Dendrimer, and Alkaline Phosphatase. Analytical Chemistry, 89(4), 2369–2376.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Yun, K.-H., Lee, H., Goh, S.-H., Suh, Y.-G. & Choi, Y. (2019b). Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials.

    Google Scholar 

  • Liang, B., & Tamm, L. K. (2016). NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nature Structural & Molecular Biology, 23(6), 468.

    Article  CAS  Google Scholar 

  • Liang, J., Liu, H., Huang, C., Yao, C., Fu, Q., Li, X., et al. (2015). Aggregated silver nanoparticles based surface-enhanced raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules. Analytical Chemistry, 87(11), 5790–5796.

    Article  CAS  PubMed  Google Scholar 

  • Ling, L., Huang, X. Y., & Zhang, W. X. (2018). Enrichment of precious metals from wastewater with core-shell nanoparticles of iron. Advanced Materials, 30(17), e1705703.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Meng, F., Zheng, W., Xue, T., Jin, Z., Wang, Z., et al. (2016). Plasmonic ZnO nanorods/Au substrates for protein microarrays with high sensitivity and broad dynamic range. Sensors and Actuators B: Chemical, 228, 231–236.

    Article  CAS  Google Scholar 

  • Liu, D., Zhang, H., Mäkilä, E., Fan, J., Herranz-Blanco, B., Wang, C.-F., et al. (2015). Microfluidic assisted one-step fabrication of porous silicon@ acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials, 39, 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Y., Xu, J., Li, Y., Gao, H., Guo, J., Shen, F., et al. (2015). A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. Food Control, 54, 7–15.

    Article  CAS  Google Scholar 

  • Lv, P., Xie, D., & Zhang, Z. (2018). Magnetic carbon dots based molecularly imprinted polymers for fluorescent detection of bovine hemoglobin. Talanta, 188, 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Lv, Y., Qin, Y., Svec, F., & Tan, T. (2016). Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers. Biosensors & Bioelectronics, 80, 433–441.

    Article  CAS  Google Scholar 

  • Lyu, Y., Zhen, X., Miao, Y., & Pu, K. (2017). Reaction-Based Semiconducting Polymer Nanoprobes for Photoacoustic Imaging of Protein Sulfenic Acids. ACS Nano, 11(1), 358–367.

    Article  CAS  PubMed  Google Scholar 

  • Ma, B., Wang, X., Wu, C., & Chang, J. (2014). Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen Biomater, 1(1), 81–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, H., Jiang, L., Hajizadeh, S., Gong, H., Lu, B., & Ye, L. (2018a). Nanoparticle-supported polymer brushes for temperature-regulated glycoprotein separation: investigation of structure–function relationship. Journal of Materials Chemistry B, 6(22), 3770–3781.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J., Kala, S., Yung, S., Chan, T. M., Cao, Y., Jiang, Y., et al. (2018b). Blocking Stemness and Metastatic Properties of Ovarian Cancer Cells by Targeting p70(S6 K) with Dendrimer Nanovector-Based siRNA Delivery. Molecular Therapy, 26(1), 70–83.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Q., Yang, J., Huang, X., Guo, W., Li, S., Zhou, H., et al. (2018c). Poly (Lactide-Co-Glycolide)-Monomethoxy-Poly-(Polyethylene Glycol) Nanoparticles Loaded with Melatonin Protect Adipose-Derived Stem Cells Transplanted in Infarcted Heart Tissue. Stem Cells, 36(4), 540–550.

    Article  CAS  PubMed  Google Scholar 

  • Ma, S., He, J., Guo, M., Sun, X., Zheng, M., & Wang, Y. (2018d). Ultrasensitive colorimetric detection of triazophos based on the aggregation of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 343–349.

    Article  CAS  Google Scholar 

  • Ma, W., Fu, F., Zhu, J., Huang, R., Zhu, Y., Liu, Z., et al. (2018e). 64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging. Nanoscale, 10(13), 6113–6124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacBeath, G., & Schreiber, S. L. (2000). Printing proteins as microarrays for high-throughput function determination. Science, 289(5485), 1760–1763.

    CAS  PubMed  Google Scholar 

  • Madrakian, T., Afkhami, A., Mahmood-Kashani, H., & Ahmadi, M. (2013). Superparamagnetic surface molecularly imprinted nanoparticles for sensitive solid-phase extraction of tramadol from urine samples. Talanta, 105, 255–261.

    Article  CAS  PubMed  Google Scholar 

  • Mangraviti, A., Tzeng, S. Y., Kozielski, K. L., Wang, Y., Jin, Y., Gullotti, D., et al. (2015). Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano, 9(2), 1236–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, F., Sun, H., Huang, Y., Tang, Y., Chen, Q., & Miao, P. (2019). Peptide cleavage-based electrochemical biosensor coupling graphene oxide and silver nanoparticles. Analytica Chimica Acta, 1047, 45–51.

    Article  CAS  PubMed  Google Scholar 

  • Mignani, S., Rodrigues, J., Tomas, H., Roy, R., Shi, X., & Majoral, J.-P. (2018). Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Advanced Drug Delivery Reviews, 136, 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Miranda, O. R., You, C.-C., Phillips, R., Kim, I.-B., Ghosh, P. S., Bunz, U. H. F., et al. (2007). Array-based sensing of proteins using conjugated polymers. Journal of the American Chemical Society, 129(32), 9856–9857.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, S. F. & Lorsch, J. R. (2015) Protein affinity purification using intein/chitin binding protein tags, Methods in enzymologyElsevier, 111–125.

    Google Scholar 

  • Moghimi, S. M., & Szebeni, J. (2003). Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Progress in Lipid Research, 42(6), 463–478.

    Article  CAS  PubMed  Google Scholar 

  • Mosiashvili, L., Chankvetadze, L., Farkas, T., & Chankvetadze, B. (2013). On the effect of basic and acidic additives on the separation of the enantiomers of some basic drugs with polysaccharide-based chiral selectors and polar organic mobile phases. Journal of Chromatography A, 1317, 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Nägele, E., Vollmer, M., Hörth, P., & Vad, C. (2004). 2D-LC/MS techniques for the identification of proteins in highly complex mixtures. Expert review of proteomics, 1(1), 37–46.

    Article  PubMed  Google Scholar 

  • Navarro, G., Cordomí, A., Zelman-Femiak, M., Brugarolas, M., Moreno, E., Aguinaga, D., et al. (2016). Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with G i and G s. BMC Biology, 14(1), 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, M. M., Carlini, A. S., Chien, M. P., Sonnenberg, S., Luo, C., Braden, R. L., et al. (2015). Enzyme-Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction. Advanced Materials, 27(37), 5547–5552.

    Article  CAS  PubMed  Google Scholar 

  • Nosrati, H., Sefidi, N., Sharafi, A., Danafar, H., & Manjili, H. K. (2018). Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorganic Chemistry, 76, 501–509.

    Article  CAS  PubMed  Google Scholar 

  • Ogunjimi, A. T., Melo, S. M. G., Vargas-Rechia, C. G., Emery, F. S., & Lopez, R. F. V. (2017). Hydrophilic polymeric nanoparticles prepared from Delonix galactomannan with low cytotoxicity for ocular drug delivery. Carbohydrate Polymers, 157, 1065–1075.

    Article  CAS  PubMed  Google Scholar 

  • Oliver-Meseguer, J., Boronat, M., Vidal-Moya, A., Concepción, P., Rivero-Crespo, M. A. n., Leyva-Pérez, A. & Corma, A. (2018) Generation and Reactivity of Electron-Rich Carbenes on the Surface of Catalytic Gold Nanoparticles. Journal of the American Chemical Society, 140 (9), 3215–3218.

    Google Scholar 

  • Parlak, O., İncel, A., Uzun, L., Turner, A. P. F., & Tiwari, A. (2017). Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors. Biosensors & Bioelectronics, 89, 545–550.

    Article  CAS  Google Scholar 

  • Pathak, A., Parveen, S., & Gupta, B. D. (2017). Ultrasensitive, highly selective, and real-time detection of protein using functionalized CNTs as MIP platform for FOSPR-based biosensor. Nanotechnology, 28(35), 355503.

    Article  CAS  PubMed  Google Scholar 

  • Pavlov, V., Xiao, Y., Shlyahovsky, B., & Willner, I. (2004). Aptamer-Functionalized au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society, 126(38), 11768–11769.

    Article  CAS  PubMed  Google Scholar 

  • Pedone, D., Moglianetti, M., De Luca, E., Bardi, G., & Pompa, P. P. (2017). Platinum nanoparticles in nanobiomedicine. Chemical Society Reviews, 46(16), 4951–4975.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, R. D., Chen, W., Cunningham, B. T., & Andrade, J. E. (2015). Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor. Biosensors & Bioelectronics, 74, 815–822.

    Article  CAS  Google Scholar 

  • Polikarpov, N., Potolytsyna, V., Bessonova, E., Tripp, S., Appelhans, D., Voit, B., et al. (2015). Dendritic glycopolymers as dynamic and covalent coating in capillary electrophoresis: View on protein separation processes and detection of nanogram-scaled albumin in biological samples. Journal of Chromatography A, 1378, 65–73.

    Article  CAS  PubMed  Google Scholar 

  • Polo, E., del Pino, P., Pardo, A., Taboada, P. & Pelaz, B. (2018) Magnetic Nanoparticles for Cancer Therapy and Bioimaging, NanooncologySpringer, 239–279.

    Google Scholar 

  • Qian, J., Dai, H., Pan, X., & Liu, S. (2011). Simultaneous detection of dual proteins using quantum dots coated silica nanoparticles as labels. Biosensors & Bioelectronics, 28(1), 314–319.

    Article  CAS  Google Scholar 

  • Qin, L., Huang, D., Xu, P., Zeng, G., Lai, C., Fu, Y., et al. (2019). In-situ deposition of gold nanoparticles onto polydopamine-decorated g-C3N4 for highly efficient reduction of nitroaromatics in environmental water purification. Journal of Colloid and Interface Science, 534, 357–369.

    Article  CAS  PubMed  Google Scholar 

  • Qu, Q., Liu, Y., Shi, W., Yan, C., & Tang, X. (2015). Tunable thick porous silica coating fabricated by multilayer-by-multilayer bonding of silica nanoparticles for open-tubular capillary chromatographic separation. Journal of Chromatography A, 1399, 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Raeeszadeh-Sarmazdeh, M., Hartzell, E., Price, J. V., & Chen, W. (2016). Protein nanoparticles as multifunctional biocatalysts and health assessment sensors. Current Opinion in Chemical Engineering, 13, 109–118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohela, G. K., Srinivasulu, Y., & Rathore, M. S. (2019). A review paper on recent trends in bio-nanotechnology: implications and potentials. Nanoscience & Nanotechnology-Asia, 9(1), 12–20.

    Article  CAS  Google Scholar 

  • Rosenberg, I. M. (2013) Protein analysis and purification: benchtop techniquesSpringer Science & Business Media.

    Google Scholar 

  • Rychahou, P., Bae, Y., Reichel, D., Zaytseva, Y. Y., Lee, E. Y., Napier, D., et al. (2018). Colorectal cancer lung metastasis treatment with polymer–drug nanoparticles. Journal of Controlled Release, 275, 85–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanjai, C., Kothan, S., Gonil, P., Saesoo, S., & Sajomsang, W. (2014). Chitosan-triphosphate nanoparticles for encapsulation of super-paramagnetic iron oxide as an MRI contrast agent. Carbohydrate Polymers, 104, 231–237.

    Article  CAS  PubMed  Google Scholar 

  • Sardesai, N., Pan, S. & Rusling, J. (2009) Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and [Ru-(bpy) 3] 2+-doped silica nanoparticles. Chemical Communications (33), 4968–4970.

    Google Scholar 

  • Sarkar, A., Hou, H. W., Mahan, A. E., Han, J., & Alter, G. (2016). Multiplexed affinity-based separation of proteins and cells using inertial microfluidics. Scientific Reports, 6, 23589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengani, M., Grumezescu, A. M., & Rajeswari, V. D. (2017). Recent trends and methodologies in gold nanoparticle synthesis–A prospective review on drug delivery aspect. OpenNano, 2, 37–46.

    Article  Google Scholar 

  • Shaheen, T. I., & Abd El Aty, A. A. (2018). In-situ green myco-synthesis of silver nanoparticles onto cotton fabrics for broad spectrum antimicrobial activity. International Journal of Biological Macromolecules, 118, 2121–2130.

    Article  CAS  PubMed  Google Scholar 

  • Shan, G., Wang, S., Fei, X., Liu, Y., & Yang, G. (2009). Heterostructured ZnO/Au nanoparticles-based resonant raman scattering for protein detection. The Journal of Physical Chemistry B, 113(5), 1468–1472.

    Article  CAS  PubMed  Google Scholar 

  • Shen, S., Wu, Y., Liu, Y., & Wu, D. (2017). High drug-loading nanomedicines: progress, current status, and prospects. International Journal of Nanomedicine, 12, 4085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shete, P. B., Patil, R. M., Thorat, N. D., Prasad, A., Ningthoujam, R. S., Ghosh, S. J., et al. (2014). Magnetic chitosan nanocomposite for hyperthermia therapy application: Preparation, characterization and in vitro experiments. Applied Surface Science, 288, 149–157.

    Article  CAS  Google Scholar 

  • Silvan, J. M., Zorraquin-Peña, I., Gonzalez de Llano, D., Moreno-Arribas, M., & Martinez-Rodriguez, A. J. (2018). Antibacterial activity of glutathione-stabilized silver nanoparticles against campylobacter multidrug-resistant strains. Frontiers in microbiology, 9, 458.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singal, S., Srivastava, A. K. & Rajesh (2016). Electrochemical impedance analysis of biofunctionalized conducting polymer-modified graphene-CNTs nanocomposite for protein detection. Nano-Micro Letters, 9 (1), 7.

    Google Scholar 

  • Singh, H., Du, J., Singh, P., & Yi, T. H. (2018). Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1. 4 and their antimicrobial application. Journal of Pharmaceutical Analysis, 8(4), 258–264.

    Google Scholar 

  • Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7), 588–599.

    Article  CAS  PubMed  Google Scholar 

  • Son, H., Ku, J., Kim, Y., Li, S., & Char, K. (2018). Amine-Reactive Poly(pentafluorophenyl acrylate) Brush Platforms for Cleaner Protein Purification. Biomacromolecules, 19(3), 951–961.

    Article  CAS  PubMed  Google Scholar 

  • Song, J., Wu, F., Wan, Y., & Ma, L. (2015). Colorimetric detection of melamine in pretreated milk using silver nanoparticles functionalized with sulfanilic acid. Food Control, 50, 356–361.

    Article  CAS  Google Scholar 

  • Song, Y., Tao, L., & Shen, X. (2012). Synthesis of new type of Au-magnetic nanocomposite and application for protein separation thereof. Nanoscale Research Letters, 7(1), 369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeva, S. I., Lee, J.-S., Smith, J. E., Rosen, S. T., & Mirkin, C. A. (2006). Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. Journal of the American Chemical Society, 128(26), 8378–8379.

    Article  CAS  PubMed  Google Scholar 

  • Strehlitz, B., Nikolaus, N. & Stoltenburg, R. (2008). Protein detection with aptamer biosensors. Sensors, 8 (7), 4296–4307.

    Google Scholar 

  • Su, F., Jia, Q., Li, Z., Wang, M., He, L., Peng, D., et al. (2019). Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for targeted antitumor drug delivery. Microporous and Mesoporous Materials, 275, 152–162.

    Article  CAS  Google Scholar 

  • Su, Y., Qiu, B., Chang, C., Li, X., Zhang, M., Zhou, B., et al. (2018). Separation of bovine hemoglobin using novel magnetic molecular imprinted nanoparticles. RSC Advances, 8(11), 6192–6199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, W., Lu, Y., Mao, J., Chang, N., Yang, J., & Liu, Y. (2015). Multidimensional sensor for pattern recognition of proteins based on DNA–gold nanoparticles conjugates. Analytical Chemistry, 87(6), 3354–3359.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X., Li, W., Zhang, X., Qi, M., Zhang, Z., Zhang, X.-E., et al. (2016). In vivo targeting and imaging of atherosclerosis using multifunctional virus-like particles of simian virus 40. Nano Letters, 16(10), 6164–6171.

    Article  CAS  PubMed  Google Scholar 

  • Syafiuddin, A., Salim, M. R., Beng Hong Kueh, A., Hadibarata, T. & Nur, H. (2017) A review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future challenges. Journal of the Chinese Chemical Society, 64 (7), 732–756.

    Google Scholar 

  • Terborg, L., Masini, J. C., Lin, M., Lipponen, K., Riekolla, M.-L., & Svec, F. (2015). Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode. Journal of Advanced Research, 6(3), 441–448.

    Article  CAS  PubMed  Google Scholar 

  • Vunain, E., Mishra, A. K., & Mamba, B. B. (2016). Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. International Journal of Biological Macromolecules, 86, 570–586.

    Article  CAS  PubMed  Google Scholar 

  • Vural, T., Yaman, Y. T., Ozturk, S., Abaci, S., & Denkbas, E. B. (2018). Electrochemical immunoassay for detection of prostate specific antigen based on peptide nanotube-gold nanoparticle-polyaniline immobilized pencil graphite electrode. Journal of Colloid and Interface Science, 510, 318–326.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H.-B., Zhang, H.-D., Chen, Y., & Liu, Y.-M. (2015a). A fluorescent biosensor for protein detection based on poly (thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA. Biosensors & Bioelectronics, 74, 581–586.

    Article  CAS  Google Scholar 

  • Wang, J.-X., Zhuo, Y., Zhou, Y., Wang, H.-J., Yuan, R., & Chai, Y.-Q. (2016a). Ceria doped zinc oxide nanoflowers enhanced luminol-based electrochemiluminescence immunosensor for amyloid-β detection. ACS Applied Materials & Interfaces, 8(20), 12968–12975.

    Article  CAS  Google Scholar 

  • Wang, J., Zhao, W.-W., Li, X.-R., Xu, J.-J., & Chen, H.-Y. (2012). Potassium-doped graphene enhanced electrochemiluminescence of SiO2@CdS nanocomposites for sensitive detection of TATA-binding protein. Chemical Communications, 48(51), 6429–6431.

    Article  CAS  Google Scholar 

  • Wang, L., Sun, Y., Wang, J., Wang, J., Yu, A., Zhang, H., et al. (2010). Water-soluble ZnO–Au nanocomposite-based probe for enhanced protein detection in a SPR biosensor system. Journal of Colloid and Interface Science, 351(2), 392–397.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Zheng, K.-Y., Lv, S.-W., Zou, H.-F., Liu, H.-S., Yan, G.-L., et al. (2018a). Preparation and characterization of universal Fe3O4@SiO2/CdTe nanocomposites for rapid and facile detection and separation of membrane proteins. New Journal of Chemistry, 42(7), 4981–4990.

    Article  CAS  Google Scholar 

  • Wang, P., Zhang, L., Zheng, W., Cong, L., Guo, Z., Xie, Y., et al. (2018b). Thermo-triggered Release of CRISPR-Cas9 System by Lipid-Encapsulated Gold Nanoparticles for Tumor Therapy. Angewandte Chemie International Edition, 57(6), 1491–1496.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Peng, J., Ma, J., & Xu, J. (2016b). Protein secondary structure prediction using deep convolutional neural fields. Scientific reports, 6, 18962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Wang, W., Davis, J. J., & Luo, X. (2015b). Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide. Microchimica Acta, 182(5), 1123–1129.

    Article  CAS  Google Scholar 

  • Wang, X., Li, S., Zhang, P., Lv, F., Liu, L., Li, L., et al. (2015c). An Optical Nanoruler Based on a Conjugated Polymer− Silver Nanoprism Pair for Label-Free Protein Detection. Advanced Materials, 27(39), 6040–6045.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Xia, J., Wang, C., Liu, L., Zhu, S., Feng, W., et al. (2017). Preparation of novel fluorescent nanocomposites based on Au nanoclusters and their application in targeted detection of cancer cells. ACS Applied Materials & Interfaces, 9(51), 44856–44863.

    Article  CAS  Google Scholar 

  • Wang, X., Zhou, J., Yun, W., Xiao, S., Chang, Z., He, P., et al. (2007). Detection of thrombin using electrogenerated chemiluminescence based on Ru (bpy) 32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement. Analytica Chimica Acta, 598(2), 242–248.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Fan, D., Zhao, G., Feng, J., Wei, D., Zhang, N., et al. (2018c). Ultrasensitive photoelectrochemical immunosensor for the detection of amyloid β-protein based on SnO2/SnS2/Ag2S nanocomposites. Biosensors & Bioelectronics, 120, 1–7.

    Article  CAS  Google Scholar 

  • Wang, Z., Lee, J., Cossins, A. R., & Brust, M. (2005). Microarray-based detection of protein binding and functionality by gold nanoparticle probes. Analytical Chemistry, 77(17), 5770–5774.

    Article  CAS  PubMed  Google Scholar 

  • Wang, E., R., Zhang, Y., Cai, J., Cai, W. & Gao, T. (2011). Aptamer-based fluorescent biosensors. Current medicinal Chemistry, 18 (27), 4175–4184.

    Google Scholar 

  • Wu, H., Huo, Q., Varnum, S., Wang, J., Liu, G., Nie, Z., et al. (2008). Dye-doped silica nanoparticle labels/protein microarray for detection of protein biomarkers. Analyst, 133(11), 1550–1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, J., Sun, J., Wang, Y., Sheng, J., Wang, F., & Sun, M. (2014). Application of iron magnetic nanoparticles in protein immobilization. Molecules, 19(8), 11465–11486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, L., Zhang, Q., Zhang, J., Zhang, L., Li, T., Feng, Y., et al. (2004). Hybrid organic–inorganic monolithic stationary phase for acidic compounds separation by capillary electrochromatography. Journal of Chromatography A, 1046(1–2), 255–261.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Javadi, A., & Gong, S. (2011). Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sensors and Actuators B: Chemical, 155(1), 357–360.

    Article  CAS  Google Scholar 

  • Yang, Z.-H., Zhuo, Y., Yuan, R., & Chai, Y.-Q. (2016). Electrochemical activity and electrocatalytic property of cobalt phthalocyanine nanoparticles-based immunosensor for sensitive detection of procalcitonin. Sensors and Actuators B: Chemical, 227, 212–219.

    Article  CAS  Google Scholar 

  • Yoon, H., Kim, J. H., Lee, N., Kim, B. G., & Jang, J. (2008). A novel sensor platform based on aptamer-conjugated polypyrrole nanotubes for label-free electrochemical protein detection. ChemBioChem, 9(4), 634–641.

    Article  CAS  PubMed  Google Scholar 

  • You, C.-C., Miranda, O. R., Gider, B., Ghosh, P. S., Kim, I.-B., Erdogan, B., et al. (2007). Detection and identification of proteins using nanoparticle–fluorescent polymer ‘chemical nose’sensors. Nature Nanotechnology, 2(5), 318.

    Article  CAS  PubMed  Google Scholar 

  • Yukird, J., Wongtangprasert, T., Rangkupan, R., Chailapakul, O., Pisitkun, T., & Rodthongkum, N. (2017). Label-free immunosensor based on graphene/polyaniline nanocomposite for neutrophil gelatinase-associated lipocalin detection. Biosensors & Bioelectronics, 87, 249–255.

    Article  CAS  Google Scholar 

  • Zarei, M. (2017). Application of nanocomposite polymer hydrogels for ultra-sensitive fluorescence detection of proteins in gel electrophoresis. TrAC Trends in Analytical Chemistry, 93, 7–22.

    Article  CAS  Google Scholar 

  • Zengin Kurt, B., Uckaya, F., & Durmus, Z. (2017). Chitosan and carboxymethyl cellulose based magnetic nanocomposites for application of peroxidase purification. International Journal of Biological Macromolecules, 96, 149–160.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., He, C., Chen, X., Tian, Z., & Li, F. (2015). The synergistic effect of polyamidoamine dendrimers and sodium silicate on the corrosion of carbon steel in soft water. Corrosion Science, 90, 585–596.

    Article  CAS  Google Scholar 

  • Zhang, T., Guo, W., Zhang, C., Yu, J., Xu, J., Li, S., et al. (2017). Transferrin-dressed virus-like ternary nanoparticles with aggregation-induced emission for targeted delivery and rapid cytosolic release of siRNA. ACS Applied Materials & Interfaces, 9(19), 16006–16014.

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, D., Yu, M., Ma, W., Guo, J., & Wang, C. (2014). Fe3O4/PVIM-Ni2+ Magnetic Composite Microspheres for Highly Specific Separation of Histidine-Rich Proteins. ACS Applied Materials & Interfaces, 6(11), 8836–8844.

    Article  CAS  Google Scholar 

  • Zhang, Y., Wang, G., Yang, L., Wang, F., & Liu, A. (2018). Recent advances in gold nanostructures based biosensing and bioimaging. Coordination Chemistry Reviews, 370, 1–21.

    Article  CAS  Google Scholar 

  • Zhao, J., Hu, S., Cao, Y., Zhang, B., & Li, G. (2015a). Electrochemical detection of protein based on hybridization chain reaction-assisted formation of copper nanoparticles. Biosensors & Bioelectronics, 66, 327–331.

    Article  CAS  Google Scholar 

  • Zhao, J., Pan, N., Huang, F., Aldarouish, M., Wen, Z., Gao, R., et al. (2018). Vx3-functionalized alumina nanoparticles assisted enrichment of ubiquitinated proteins from cancer cells for enhanced cancer immunotherapy. Bioconjugate Chemistry, 29(3), 786–794.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, M., Zhuo, Y., Chai, Y.-Q., & Yuan, R. (2015b). Au nanoparticles decorated C60 nanoparticle-based label-free electrochemiluminesence aptasensor via a novel “on-off-on” switch system. Biomaterials, 52, 476–483.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Liu, X., Li, J., Qiang, W., Sun, L., Li, H., et al. (2016). Microfluidic chip-based silver nanoparticles aptasensor for colorimetric detection of thrombin. Talanta, 150, 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J., Lin, Z., Lin, G., Yang, H., & Zhang, L. (2015). Preparation of magnetic metal–organic framework nanocomposites for highly specific separation of histidine-rich proteins. Journal of Materials Chemistry B, 3(10), 2185–2191.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J., Lin, Z., Liu, W., Wang, L., Zhao, S., Yang, H., et al. (2014). One-pot synthesis of CuFe2O4 magnetic nanocrystal clusters for highly specific separation of histidine-rich proteins. Journal of Materials Chemistry B, 2(37), 6207–6214.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X., Xu, W., Wang, Y., Kuang, Q., Shi, Y., Zhong, L., et al. (2010). Fabrication of Cluster/Shell Fe3O4/Au Nanoparticles and Application in Protein Detection via a SERS Method. The Journal of Physical Chemistry C, 114(46), 19607–19613.

    Article  CAS  Google Scholar 

  • Zhu, C., Lv, Y., Qian, C., Qian, H., Jiao, T., Wang, L., et al. (2016). Proliferation and osteogenic differentiation of rat BMSCs on a novel Ti/SiC metal matrix nanocomposite modified by friction stir processing. Scientific Reports, 6, 38875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Danquah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeevanandam, J., Kulabhusan, P.K., Danquah, M.K. (2019). Biofunctional Nanoparticles for Protein Separation, Purification and Detection. In: Pogaku, R. (eds) Horizons in Bioprocess Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-29069-6_7

Download citation

Publish with us

Policies and ethics