Skip to main content

Evolution of Submillisecond Temporal Coding in Vertebrate Electrosensory and Auditory Systems

  • Chapter
  • First Online:
Electroreception: Fundamental Insights from Comparative Approaches

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 70))

Abstract

The ability to detect submillisecond differences in the arrival times of stimuli at different sensory receptors has evolved independently in multiple clades. Auditory and electrosensory systems across vertebrates provide well-studied examples of how specialized sensory pathways are able to achieve such extreme temporal sensitivity. These circuits share a remarkable number of similarities at the cellular and synaptic levels of organization despite serving different sensory modalities and despite arising from multiple independent evolutionary origins. This points to a degree of predictability in neural circuit evolution and to the power of natural selection in driving evolutionary change to neural circuits to solve a specific behavioral problem. However, these similar cellular and synaptic building blocks are used to construct different circuit solutions to this behavioral problem in different clades. These differences likely reflect some combination of chance, evolutionary history, and adaptation. Importantly, these differences also make it clear that discoveries in one organism cannot be extrapolated to other organisms, highlighting the importance of comparative approaches in addressing general problems in neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashida G, Carr CE (2011) Sound localization: Jeffress and beyond. Curr Opin Neurobiol 21(5):745–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Averbeck BB, Latham PE, Pouget A (2006) Neural correlations, population coding and computation. Nat Rev Neurosci 7:358–366

    Article  CAS  PubMed  Google Scholar 

  • Baker CA, Huck K, Carlson BA (2015) Peripheral sensory coding through oscillatory synchrony in weakly electric fish. elife 4:e08163

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker CA, Kohashi T, Lyons-Warren AM, Ma X, Carlson BA (2013) Multiplexed temporal coding of electric communication signals in mormyrid fishes. J Exp Biol 216:2365–2379

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckius GE, Batra R, Oliver DL (1999) Axons from anteroventral cochlear nucleus that terminate in medial superior olive of cat: observations related to delay lines. J Neurosci 19:3146–3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell CC (1986) Electroreception in mormyrid fish: central physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 423–452

    Google Scholar 

  • Bell CC, Grant K (1989) Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish. J Neurosci 9(3):1029–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell CC, Szabo T (1986) Electroreception in mormyrid fish: central anatomy. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 375–421

    Google Scholar 

  • Bennett MVL (1965) Electroreceptors in mormyrids. Cold Spring Harb Symp Quant Biol 30:245–262

    Article  CAS  PubMed  Google Scholar 

  • Bennett MVL (1971) Electroreception. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 5. Academic, London, pp 493–574

    Google Scholar 

  • Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417:543–547

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz EA, Zakon HH (2015) Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience. Trends Neurosci 38:273–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MR, Kaczmarek LK (2011) Potassium channel modulation and auditory processing. Hear Res 279:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brughera A, Dunai L, Hartmann WM (2013) Human interaural time difference thresholds for sine tones: the high-frequency limit. J Acoust Soc Am 133:2839–2855

    Article  PubMed  PubMed Central  Google Scholar 

  • Bullock TH, Behrend K, Heiligenberg W (1975) Comparison of the jamming avoidance responses in gymnotoid and gymnarchid electric fish: a case of convergent evolution of behavior and its sensory basis. J Comp Physiol 103(1):97–121

    Article  Google Scholar 

  • Burger RM, Fukui I, Ohmori H, Rubel EW (2011) Inhibition in the balance: binaurally coupled inhibitory feedback in sound localization circuitry. J Neurophysiol 106:4–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlson BA (2002) Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish. J Physiol Paris 96(5–6):405–419

    Article  PubMed  Google Scholar 

  • Carlson BA (2008) Phantoms in the brain: Ambiguous representations of stimulus amplitude and timing in weakly electric fish. J Physiol Paris 102:209–222

    Article  PubMed  Google Scholar 

  • Carlson BA (2012) Diversity matters: the importance of comparative studies and the potential for synergy between neuroscience and evolutionary biology. Arch Neurol 69:987–993

    Article  PubMed  Google Scholar 

  • Carlson BA, Kawasaki M (2007) Behavioral responses to jamming and ‘phantom’ jamming stimuli in the weakly electric fish Eigenmannia. J Comp Physiol A 193:927–941

    Article  Google Scholar 

  • Carlson BA, Gallant JR (2013) From sequence to spike to spark: Evo-devo-neuroethology of electric communication in mormyrid fishes. J Neurogenetics 27:106–129

    Article  PubMed  Google Scholar 

  • Carlson BA, Hasan SM, Hollmann M, Miller DB, Harmon LJ, Arnegard ME (2011) Brain evolution triggers increased diversification of electric fishes. Science 332:583–586

    Article  CAS  PubMed  Google Scholar 

  • Carr CE (1993) Processing of temporal information in the brain. Annu Rev Neurosci 16:223–243

    Article  CAS  PubMed  Google Scholar 

  • Carr CE (2004) Timing is everything: organization of timing circuits in auditory and electrical sensory systems. J Comp Neurol 472:131–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Carr CE, Boudreau RE (1991) Central projections of auditory nerve fibers in the barn owl. J Comp Neurol 314:306–318

    Article  CAS  PubMed  Google Scholar 

  • Carr CE, Boudreau RE (1993) Organization of the nucleus magnocellularis and the nucleus laminaris in the barn owl: encoding and measuring interaural time differences. J Comp Neurol 334:337–355

    Article  CAS  PubMed  Google Scholar 

  • Carr CE, Friedman MA (1999) Evolution of time coding systems. Neural Comput 11(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Carr CE, Heiligenberg W, Rose GJ (1986a) A time-comparison circuit in the electric fish Eigenmannia midbrain I. Behavior and physiology. J Neurosci 6(1):107–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr CE, Konishi M (1988) Axonal delay lines for time measurement in the owl's brainstem. Proc Natl Acad Sci USA 85:8311–8315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10:3227–3246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr CE, Maler L (1986) Electroreception in gymnotiform fish: central anatomy and physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 319–373

    Google Scholar 

  • Carr CE, Maler L, Taylor B (1986b) A time-comparison circuit in the electric fish Eigenmannia midbrain II. Functional morphology. J Neurosci 6(5):1372–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr CE, Shah S, McColgan T, Ashida G, Kuokkanen PT, Brill S, Kempter R, Wagner H (2015) Maps of interaural delay in the owl’s nucleus laminaris. J Neurophysiol 114:1862–1873

    Article  PubMed  PubMed Central  Google Scholar 

  • Carr CE, Soares D (2002) Evolutionary convergence and shared computational principles in the auditory system. Brain Behav Evol 59(5–6):294–311

    Article  CAS  PubMed  Google Scholar 

  • Carr CE, Soares D, Parameshwaran S, Perney T (2001) Evolution and development of time coding systems. Curr Opin Neurobiol 11(6):727–733

    Article  CAS  PubMed  Google Scholar 

  • Carr CE, Soares D, Smolders J, Simon JZ (2009) Detection of interaural time differences in the alligator. J Neurosci 29(25):7978–7982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen-Dalsgaard J, Carr CE (2008) Evolution of a sensory novelty: tympanic ears and the associated neural processing. Brain Res Bull 75:365–370

    Article  PubMed  Google Scholar 

  • Clack JA (1997) The evolution of tetrapod ears and the fossil record. Brain Behav Evol 50:198–212

    Article  CAS  PubMed  Google Scholar 

  • Fischl MJ, Burger RM, Schmidt-Pauly M, Alexandrova O, Sinclair JL, Grothe B, Forsythe ID, Kopp-Scheinpflug C (2016) Physiology and anatomy of neurons in the medial superior olive of the mouse. J Neurophysiol 116:2676–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford MC, Alexandrova O, Cossell L, Stange-Marten A, Sinclair J, Kopp-Scheinpflug C, Pecka M, Attwell D, Grothe B (2015) Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat Commun 6:8073

    Article  CAS  PubMed  Google Scholar 

  • Franken TP, Roberts MT, Wei L, Golding NL, Joris PX (2015) In vivo coincidence detection in mammalian sound localization generates phase delays. Nat Neurosci 18:444–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman MA, Hopkins CD (1998) Neural substrates for species recognition in the time-coding electrosensory pathway of mormyrid electric fish. J Neurosci 18(3):1171–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman MA, Kawasaki M (1997) Calretinin-like immunoreactivity in mormyrid and gymnarchid electrosensory and electromotor systems. J Comp Neurol 387(3):341–357

    Article  CAS  PubMed  Google Scholar 

  • Grothe B (2000) The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog Neurobiol 61:581–610

    Article  CAS  PubMed  Google Scholar 

  • Grothe B (2003) New roles for synaptic inhibition in sound localization. Nat Rev Neurosci 4:1–11

    Article  CAS  Google Scholar 

  • Grothe B, Klump GM (2000) Temporal processing in sensory systems. Curr Opin Neurobiol 10(4):467–473

    Article  CAS  PubMed  Google Scholar 

  • Grothe B, Pecka M (2014) The natural history of sound localization in mammals – a story of neuronal inhibition. Front Neural Circuits 8:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012

    Article  CAS  PubMed  Google Scholar 

  • Harder W (1968) Die beziehungen zwischen elektrorezeptoren, elektrischem organ, seitenlinienorganen und nervensystem bei den Mormyridae (Teleostei, Pisces). Z Vergl Physiol 59:272–318

    Google Scholar 

  • Harper NS, McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430:682–686

    Article  CAS  PubMed  Google Scholar 

  • Harrison JM, Warr WB (1962) A study of the cochlear nuclei and ascending auditory pathways of the medulla. J Comp Neurol 119:341–380

    Article  CAS  PubMed  Google Scholar 

  • Heiligenberg W (1991) Neural nets in electric fish, Computational Neuroscience Series. MIT Press, Cambridge

    Google Scholar 

  • Heiligenberg WF, Rose G (1985) Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia. J Neurosci 5(2):515–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins CD (1986a) Behavior of Mormyridae. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 527–576

    Google Scholar 

  • Hopkins CD (1986b) Temporal structure of non-propagated electric communication signals. Brain Behav Evol 28(1–3):43–59

    Article  CAS  PubMed  Google Scholar 

  • Hopkins CD, Bass AH (1981) Temporal coding of species recognition signals in an electric fish. Science 212(4490):85–87

    Article  CAS  PubMed  Google Scholar 

  • Irvine DRF (1992) Physiology of the auditory brainstem. In: Popper AN, Fay RR (eds) The mammalian auditory pathway: neurophysiology, Springer Handbook of Auditory Research, vol 2. Springer, New York, NY

    Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39

    Article  CAS  PubMed  Google Scholar 

  • Jercog PE, Svirskis G, Kotak VC, Sanes DH, Rinzel J (2010) Asymmetric excitatory synaptic dynamics underlie interaural time difference processing in the auditory system. PLoS Biol 8(6):1–9

    Article  CAS  Google Scholar 

  • Joris PX, van de Sande B, Louage DH, van der Heijden M (2006) Binaural and cochlear disparities. Proc Natl Acad Sci USA 103:12917–12922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapfer C, Seidl AH, Schweizer H, Grothe B (2002) Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nat Neurosci 5:247–253

    Article  CAS  PubMed  Google Scholar 

  • Karino S, Smith PH, Yin TCT, Joris PX (2011) Axonal branching patterns as sources of delay in the mammalian auditory brainstem: a re-examination. J Neurosci 31:3016–3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz PS (2016) ‘Model organisms’ in the light of evolution. Curr Biol 26:R641–R666

    Article  CAS  Google Scholar 

  • Kawasaki M (1993) Independently evolved jamming avoidance responses employ identical computational algorithms: a behavioral study of the African electric fish, Gymnarchus niloticus. J Comp Physiol A 173(1):9–22

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki M (1997) Sensory hyperacuity in the jamming avoidance response of weakly electric fish. Curr Opin Neurobiol 7(4):473–479

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki M (2009) Evolution of time-coding systems in weakly electric fishes. Zool Sci 26:587–599

    Article  Google Scholar 

  • Kawasaki M, Guo Y (1996) Neuronal circuitry for comparison of timing in the electrosensory lateral line lobe of the African wave-type electric fish Gymnarchus niloticus. J Neurosci 16(1):380–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark EF (1965) Discharge patterns of single fibers in the Cat’s auditory nerve. The MIT Press, Cambridge, MA

    Google Scholar 

  • Klumpp R, Eady H (1956) Some measurements of interaural time difference thresholds. J Acoust Soc Am 28:215–232

    Article  Google Scholar 

  • Knudsen EI, Blasdel GG, Konishi M (1979) Sound localization in by the barn owl (Tyto alba) measured with the search coil technique. J Comp Physiol 133:1–11

    Article  Google Scholar 

  • Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17(9):3312–3321

    Article  PubMed  PubMed Central  Google Scholar 

  • Köppl C, Carr CE (2008) Maps of interaural time difference in the chicken’s brainstem nucleus laminaris. Biol Cybern 98:541–559

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhn GF (1977) Model for the interaural time differences in the azimuthal plane. J Acoust Soc Am 62:157–167

    Article  Google Scholar 

  • Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 1:475–480

    Article  Google Scholar 

  • Lavoué S, Miya M, Arnegard ME, Sullivan JP, Hopkins CD, Nishida M (2012) Comparable ages for the independent origins of electrogenesis in African and South American weakly electric fishes. PLoS One 7:e36287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyons-Warren AM, Kohashi T, Mennerick S, Carlson BA (2013) Detection of submillisecond spike timing differences based on delay-line anti-coincidence detection. J Neurophysiol 110:2295–2311

    Article  PubMed  PubMed Central  Google Scholar 

  • MacLeod KM, Soares D, Carr CE (2006) Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae). J Comp Neurol 495:185–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsushita A, Kawasaki M (2004) Unitary giant synapses embracing a single neuron at the convergent site of time-coding pathways of an electric fish, Gymnarchus niloticus. J Comp Neurol 472:140–155

    Article  PubMed  Google Scholar 

  • Matsushita A, Kawasaki M (2005) Neuronal sensitivity to microsecond time disparities in the electrosensory system of Gymnarchus niloticus. J Neurosci 25:11424–11432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauk MD, Buonomano DV (2004) The neural basis of temporal processing. Annu Rev Neurosci 27:307–340

    Article  CAS  PubMed  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4(4):396–401

    Article  CAS  PubMed  Google Scholar 

  • Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mugnaini E, Maler L (1987a) Cytology and immunocytochemistry of the nucleus extrolateralis anterior of the mormyrid brain: possible role of GABAergic synapses in temporal analysis. Anat Embryol (Berl) 176(3):313–336

    Article  CAS  Google Scholar 

  • Mugnaini E, Maler L (1987b) Cytology and immunocytochemistry of the nucleus of the lateral line lobe in the electric fish Gnathonemus petersii (Mormyridae): evidence suggesting that GABAergic synapses mediate an inhibitory corollary discharge. Synapse 1(1):32–56

    Article  CAS  PubMed  Google Scholar 

  • Myoga MH, Lehnert S, Leibold C, Felmy F, Grothe B (2014) Glycinergic inhibition tunes coincidence detection in the auditory brainstem. Nat Commun 5:3790

    Article  CAS  PubMed  Google Scholar 

  • Parameshwaran S, Carr CE, Perney TM (2001) Expression of the Kv3.1 potassium channel in the avian auditory brainstem. J Neurosci 21(2):485–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573

    CAS  PubMed  Google Scholar 

  • Pecka M, Brand A, Behrend O, Grothe B (2008) Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition. J Neurosci 28:6914–6925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • PlauÅ¡ka A, Borst JGG, van der Heijden M (2016) Predicting binaural responses from monaural responses in the gerbil medial superior olive. J Neurophysiol 115:2950–2963

    Article  PubMed  PubMed Central  Google Scholar 

  • PlauÅ¡ka A, van der Heijden M, Borst JGG (2017) A test of the stereausis hypothesis for sound localization in mammals. J Neurosci 37:7278–7289

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts MT, Seeman SC, Golding NL (2013) A mechanistic understanding of the role of feedforward inhibition in the mammalian sound localization circuitry. Neuron 78:923–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolls ET (1997) The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex. Exp Brain Res 114:149–162

    Article  CAS  PubMed  Google Scholar 

  • Rose G, Heiligenberg W (1985) Temporal hyperacuity in the electric sense of fish. Nature 318(6042):178–180

    Article  CAS  PubMed  Google Scholar 

  • Scheich H, Bullock TH, Hamstra RH (1973) Coding properties of two classes of afferent nerve fibers: high frequency electroreceptors in the electric fish, Eigenmannia. J Neurophysiol 36:39–60

    Article  CAS  PubMed  Google Scholar 

  • Seidl AH, Rubel EW (2016) Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem. Glia 64:487–494

    Article  PubMed  Google Scholar 

  • Seidl AH, Rubel EW, Barría A (2014) Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. J Neurosci 34:4914–4919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidl AH, Rubel EW, Harris DM (2010) Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection. J Neurosci 30:70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PH, Joris PX, Carney LH, Yin TC (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304:387–407

    Article  CAS  PubMed  Google Scholar 

  • Smith PH, Joris PX, Yin TC (1993) Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J Comp Neurol 331:245–260

    Article  CAS  PubMed  Google Scholar 

  • Smith PH, Joris PX, Yin TC (1998) Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J Neurophysiol 79:3127–3142

    Article  CAS  PubMed  Google Scholar 

  • Stange-Marten A, Nabel AL, Sinclair JL, Fischl M, Alexandrova O, Wohlfrom H, Kopp-Scheinpflug C, Pecka M, Grothe B (2017) Input timing for spatial processing is precisely tuned via constant synaptic delays and myelination patterns in the auditory brainstem. Proc Natl Acad Sci USA 114:E4851–E4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4(7):1787–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo T, Ravaille M, Libouban S, Enger PS (1983) The mormyrid rhombencephalon. I. Light and EM investigations on the structure and connections of the lateral line lobe nucleus with HRP labelling. Brain Res 266:1–19

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4(7):1781–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trussell LO (1997) Cellular mechanisms for preservation of timing in central auditory pathways. Curr Opin Neurobiol 7:487–492

    Article  CAS  PubMed  Google Scholar 

  • Trussell LO (1999) Synaptic mechanisms for coding timing in auditory neurons. Annu Rev Physiol 61:477–496

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden M, Lorteije JAM, Plauska A, Roberts MT, Golding NL, Borst JGG (2013) Directional hearing by linear summation of binaural inputs at the medial superior olive. Neuron 78:936–948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vélez A, Carlson BA (2016) Detection of transient synchrony across oscillating receptors by the central electrosensory system of mormyrid fish. elife 5:e16851

    Article  PubMed  PubMed Central  Google Scholar 

  • Vélez A, Kohashi T, Lu A, Carlson BA (2017) The cellular and circuit basis for evolutionary change in sensory perception in mormyrid fishes. Sci Rep 7:3783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von der Emde G (1998) Capacitance detection in the wave-type electric fish Eigenmannia during active electrolocation. J Comp Physiol A 182:217–224

    Article  Google Scholar 

  • von der Emde G (1999) Active electrolocation of objects in weakly electric fish. J Exp Biol 202(10):1205–1215

    PubMed  Google Scholar 

  • von Gersdorff H, Borst JG (2002) Short-term plasticity at the calyx of Held. Nat Rev Neurosci 2:53–64

    Article  CAS  Google Scholar 

  • Waxman SG (1980) Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3:141–150

    Article  CAS  PubMed  Google Scholar 

  • Xu-Friedman MA, Hopkins CD (1999) Central mechanisms of temporal analysis in the knollenorgan pathway of mormyrid electric fish. J Exp Biol 202(10):1311–1318

    CAS  PubMed  Google Scholar 

  • Yartsev MM (2017) The emperor’s new wardrobe: rebalancing diversity of animal models in neuroscience research. Science 358:466–469

    Article  CAS  PubMed  Google Scholar 

  • Young SR, Rubel EW (1983) Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. J Neurosci 3:1373–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakon HH (1986) The electroreceptive periphery. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 103–156

    Google Scholar 

  • Zhou Y, Carney LH, Colburn HS (2005) A model for interaural time difference sensitivity in the medial superior olive: interaction of excitatory and inhibitory synaptic inputs, channel dynamics, and cellular morphology. J Neurosci 25:3046–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants IOS-1050701, IOS-1255396, and IOS-1755071 from the National Science Foundation.

Compliance with Ethics Requirements

Bruce A. Carlson declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Carlson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carlson, B.A. (2019). Evolution of Submillisecond Temporal Coding in Vertebrate Electrosensory and Auditory Systems. In: Carlson, B., Sisneros, J., Popper, A., Fay, R. (eds) Electroreception: Fundamental Insights from Comparative Approaches. Springer Handbook of Auditory Research, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-29105-1_10

Download citation

Publish with us

Policies and ethics