Skip to main content

Guidelines for Processing Emulsion-Based Foods

  • Chapter
  • First Online:
Food Emulsifiers and Their Applications

Abstract

Emulsions are dispersions of one liquid into the second immiscible liquid in the form of fine droplets. Emulsions can be classified as either oil-in-water or water-in-oil emulsions depending on whether oil or water is the dispersed phase. Milk, cream and sauces are some examples of oil-in-water emulsions whereas butter and margarine are examples of water-in-oil emulsions. This chapter discusses the physical principles that are involved in the formation and stability of food emulsions. Prediction of droplet size distribution for food emulsions that are formed in colloid mill (predominantly by shear) and high pressure homogenizer (predominantly by turbulence) in terms of operating conditions in these equipments is discussed. The fluid mechanics of droplet breakage and coalescence in shear and turbulence are discussed and applied to the formation of food emulsions and to the prediction of drop size. The role of proteins and surfactants on the stability of emulsions is discussed. The effect of interfacial dilatational and shear elasticity on thin film stability and drop coalescence is described. Some recent results of a new technique, layer by layer deposition, to improve the shelf life of emulsions by using alternate layers of proteins and polysaccharides is presented. Thermodynamics and phase behavior of microemulsions and its application to food is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The droplet size needs to be as small as possible in order to reduce the rate of creaming as well as Brownian collisions so as to minimize coarsening due to coalescence.

References

  • Andersen JAC, Williams PN (1965) Margarine. Pergamon Press, London

    Google Scholar 

  • Aoki T, Decker EA, McClements DJ (2005) Influence of environmental stresses on stability of O/W emulsions containing droplets stabilized by multilayered membranes produced by a layer-by-layer electrostatic deposition technique. Food Hydrocolloids 19(2):209–220

    Article  CAS  Google Scholar 

  • Atkinson PJ, Dickinson E, Horne DS, Richardson RM (1995) Neutron reflectivity of adsorbed β-casein and β-lactoglobulin at the air/water interface. J Chem Soc Faraday Trans 91(17):2847–2854

    Article  CAS  Google Scholar 

  • Barthes-Biesel D, Acrivos A (1973) Deformation and burst of a liquid droplet freely suspended in a linear shear field. J Fluid Mech 61:1–21

    Article  Google Scholar 

  • Bartok W, Mason SG (1957) J Colloid Interface Sci 12:243

    Google Scholar 

  • Becher P (1985) Encyclopedia of emulsion technology, vol 2. Marcel Dekker, New York

    Google Scholar 

  • Becher P (2001) Emulsion applications. In: Emulsions: theory and practice. Oxford University Press, Washington, DC, pp 429–459

    Google Scholar 

  • Bergenstahl G (1997) Physicochemical aspects of emulsifier functionality. Food emulsifier and their applications. Chapman & Hall, New York

    Google Scholar 

  • Borwanker RP, Buliga GS (1990) Food emulsion and foams: theory and practice. In: AIChE symposium series

    Google Scholar 

  • Bos MA, van Vliet T (2001) Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv Colloid Interf Sci 91(3):437–471

    Article  CAS  Google Scholar 

  • Brennen JG, Butters JR et al (1990) Food engineering operations. Elsevier Applied Science, New York

    Google Scholar 

  • Calabrese RV, Chang TPK, Dang PT (1986) Drop breakup in turbulent stirred tank contactors—part I: effect of dispersed phase viscosity. AIChE J 32(4):657–666

    Article  CAS  Google Scholar 

  • Caruso F, Möhwald H (1999a) Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids. Langmuir 15(23):8276–8281

    Article  CAS  Google Scholar 

  • Caruso F, Möhwald H (1999b) Protein multilayer formation on colloids through a stepwise self-assembly technique. J Am Chem Soc 121(25):6039–6046

    Article  CAS  Google Scholar 

  • Caruso F, Caruso RA, Möhwald H (1998a) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114

    Article  CAS  PubMed  Google Scholar 

  • Caruso F, Furlong DN, Ariga K, Ichinose I, Kunitake T (1998b) Characterization of polyelectrolyte-protein multilayer films by atomic force microscopy, scanning electron microscopy, and Fourier transform infrared reflection-absorption spectroscopy. Langmuir 14(16):4559–4565

    Article  CAS  Google Scholar 

  • Caruso F, Lichtenfeld H, Donath E, Möhwald H (1999) Investigation of electrostatic interactions in polyelectrolyte multilayer films: binding of anionic fluorescent probes to layers assembled onto colloids. Macromolecules 32(7):2317–2328

    Article  CAS  Google Scholar 

  • Caruso F, Fiedler H, Haage K (2000) Assembly of β-glucosidase multilayers on spherical colloidal particles and their use as active catalysts. Colloids Surf A Physicochem Eng Asp 169(1):287–293

    Article  CAS  Google Scholar 

  • Chilton H, Laws D (1980) Stability of aqueous emulsions of the essential oil of hops. J Inst Brew 86(3):126–130

    Article  CAS  Google Scholar 

  • Cornec ME (1999) Adsorption dynamics of α-lactalbumin and β-lactoglobulin at air–water interfaces. J Colloid Interface Sci 214(2):129–142

    Article  CAS  PubMed  Google Scholar 

  • Coulaloglou CA, Tavlarides LL (1977) Description of interaction processes in agitated liquid-liquid dispersions. Chem Eng Sci 32:1289

    Article  CAS  Google Scholar 

  • Cox RG (1969) The deformation of a drop in a general time-dependent flow. J Fluid Mech 37:601–623

    Article  Google Scholar 

  • Darling DF, Birkett RJ (1987) Food colloids in practice. In: Dickinson E (ed) Food Emulsions and Foams. Royal Society of Chemistry, London, UK, pp 1–29

    Google Scholar 

  • Das PK, Kumar R, Ramkrishna D (1987) Coalescence of drops in stirred dispersion. A white noise model for coalescence. Chem Eng Sci 42(2):213–220

    Article  CAS  Google Scholar 

  • Davies JT (1957) Gas/liquid and liquid/liquid interface. In: Proceedings of international congress on surface activity. Butterworth, London

    Google Scholar 

  • Davis H (1994) Factors determining emulsion type: hydrophile—lipophile balance and beyond. Colloids Surf A Physicochem Eng Asp 91:9–24

    Article  CAS  Google Scholar 

  • De Feijter J, Benjamins J (1982) Soft-particle model of compact macromolecules at interfaces. J Colloid Interface Sci 90(1):289–292

    Article  Google Scholar 

  • Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237

    Article  CAS  Google Scholar 

  • Decher G, Hong J (1991a) Buildup of ultrathin multilayer films by a self-assembly process: II. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber Bunsenges Phys Chem 95(11):1430–1434

    Article  CAS  Google Scholar 

  • Decher G, Hong JD (1991b) Buildup of ultrathin multilayer films by a self-assembly process, I. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. In: Paper presented at the makromolekulare chemie, macromolecular symposia

    Google Scholar 

  • Decher G, Hong J, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210:831–835

    Article  Google Scholar 

  • Dickinson E (1992) An introduction to food colloids. Oxford University Press, New York

    Google Scholar 

  • Dickinson E (2001) Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids Surf B: Biointerfaces 20(3):197–210

    Article  CAS  PubMed  Google Scholar 

  • Dickinson E, Hong S-T (1995) Influence of water-soluble nonionic emulsifier on the rheology of heat-set protein-stabilized emulsion gels. J Agric Food Chem 43(10):2560–2566

    Article  CAS  Google Scholar 

  • Dickinson E, Matsumura Y (1994) Proteins at liquid interfaces: role of the molten globule state. Colloids Surf B: Biointerfaces 3(1):1–17

    Article  CAS  Google Scholar 

  • Dickinson E, Stainsby G (1988) Advances in food emulsions and foams. Elsevier Applied Science Publishers Ltd., London

    Google Scholar 

  • Djabbarah N, Wasan D (1982) Dilational viscoelastic properties of fluid interfaces—III. Mixed surfactant systems. Chem Eng Sci 37(2):175–184

    Article  CAS  Google Scholar 

  • Douillard R, Lefebvre J (1990) Adsorption of proteins at the gas—liquid interface: models for concentration and pressure isotherms. J Colloid Interface Sci 139(2):488–499

    Article  CAS  Google Scholar 

  • Estrela-Lopis I, Leporatti S, Moya S, Brandt A, Donath E, Möhwald H (2002) SANS studies of polyelectrolyte multilayers on colloidal templates. Langmuir 18(21):7861–7866

    Article  CAS  Google Scholar 

  • Evans DF, Mitchell DJ, Ninham BW (1986) Oil, water, and surfactant—properties and conjectured structure of simple microemulsions. J Phys Chem 90(13):2817–2825. https://doi.org/10.1021/j100404a009

    Article  CAS  Google Scholar 

  • Fisher L, Parker N, Dickinson E, Stainsby G (1988) Advances in food emulsions and foams. Elsevier Applied Science, London, p 45

    Google Scholar 

  • Flanagan J, Singh H (2006) Microemulsions: a potential delivery system for bioactives in food. Crit Rev Food Sci Nutr 46(3):221–237

    Article  CAS  PubMed  Google Scholar 

  • Flanagan J, Kortegaard K, Pinder DN, Rades T, Singh H (2006) Solubilisation of soybean oil in microemulsions using various surfactants. Food Hydrocolloids 20(2):253–260

    Article  CAS  Google Scholar 

  • Frisch HL, Simha R (1956) Monolayers of linear macromolecules. J. Chem. Phys. 24(4):652–655

    Article  CAS  Google Scholar 

  • Gerbacia W, Rosano HL (1973) Microemulsions—formation and stabilization. J Colloid Interface Sci 44(2):242–248. https://doi.org/10.1016/0021-9797(73)90216-6

    Article  CAS  Google Scholar 

  • Gopal ESR (1968) Principles of emulsion formation. In: Sherman P (ed) Emulsion science. Academic, London

    Google Scholar 

  • Griffin WC (1946) Classification of surface-active agents by “HLB”. J Soc Cosmet Chem 1:311–326

    Google Scholar 

  • Gu YS, Regnier L, McClements DJ (2005) Influence of environmental stresses on stability of oil-in-water emulsions containing droplets stabilized by β-lactoglobulin–ι-carrageenan membranes. J Colloid Interface Sci 286(2):551–558

    Article  CAS  PubMed  Google Scholar 

  • Guzey D, McClements DJ (2006) Formation, stability and properties of multilayer emulsions for application in the food industry. Adv Colloid Interface Sci 128:227–248. https://doi.org/10.1016/j.cis.2006.11.021

    Article  CAS  PubMed  Google Scholar 

  • Güzey D, McClements DJ (2006) Influence of environmental stresses on O/W emulsions stabilized by β-lactoglobulin–pectin and β-lactoglobulin–pectin–chitosan membranes produced by the electrostatic layer-by-layer deposition technique. Food Biophys 1(1):30–40

    Article  Google Scholar 

  • Guzey D, Kim H, McClements DJ (2004) Factors influencing the production of o/w emulsions stabilized by β-lactoglobulin–pectin membranes. Food Hydrocolloids 18(6):967–975

    Article  CAS  Google Scholar 

  • Hiemenz P, Rajagopalan R (1997) The electrical double layer and double-layer interactions. In: Principles of colloid and surface chemistry, Marcel Dekker, Inc., New York, pp 499–533

    Google Scholar 

  • Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J 1(3):289–295

    Article  CAS  Google Scholar 

  • Humblet-Hua K, Scheltens G, Van Der Linden E, Sagis L (2011) Encapsulation systems based on ovalbumin fibrils and high methoxyl pectin. Food Hydrocolloids 25(4):569–576

    Article  CAS  Google Scholar 

  • Humblet-Hua N-PK, van der Linden E, Sagis LM (2012) Microcapsules with protein fibril reinforced shells: effect of fibril properties on mechanical strength of the shell. J Agric Food Chem 60(37):9502–9511

    Article  CAS  PubMed  Google Scholar 

  • Ibarz G, Dähne L, Donath E, Möhwald H (2002) Controlled permeability of polyelectrolyte capsules via defined annealing. Chem Mater 14(10):4059–4062

    Article  CAS  Google Scholar 

  • Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans II 72:1525–1568. https://doi.org/10.1039/f29767201525

    Article  CAS  Google Scholar 

  • Jakobsson M, Sivik B (1994) Oxidative stability of fish oil included in a microemulsion. J Dispers Sci Technol 15(5):611–619

    Article  CAS  Google Scholar 

  • Kahlweit M, Strey R (1985) Phase-behavior of ternary-systems of the type H2O-oil-nonionic amphiphile (microemulsions). Angew Chem Int Ed 24(8):654–668. https://doi.org/10.1002/anie.198506541

    Article  Google Scholar 

  • Kandori K (1995) Applications of microporous glass membranes: membrane emulsification. In: Gaonkar AG (ed) Food processing: recent developments. Elsevier, Amsterdam, pp 113–142

    Chapter  Google Scholar 

  • Karam HJ, Bellinger JC (1968) Deformation and breakup of liquid droplets in a simple shear field. Ind Eng Chem Res 7(4):576–581

    CAS  Google Scholar 

  • Kato N, Schuetz P, Fery A, Caruso F (2002) Thin multilayer films of weak polyelectrolytes on colloid particles. Macromolecules 35(26):9780–9787

    Article  CAS  Google Scholar 

  • Klinkesorn U, Sophanodora P, Chinachoti P, McClements DJ, Decker EA (2005a) Increasing the oxidative stability of liquid and dried tuna oil-in-water emulsions with electrostatic layer-by-layer deposition technology. J Agric Food Chem 53(11):4561–4566

    Article  CAS  PubMed  Google Scholar 

  • Klinkesorn U, Sophanodora P, Chinachoti P, McClements DJ, Decker EA (2005b) Stability of spray-dried tuna oil emulsions encapsulated with two-layered interfacial membranes. J Agric Food Chem 53(21):8365–8371

    Article  CAS  PubMed  Google Scholar 

  • Kokelaar J, Prins A (1995) Surface rheological properties of bread dough components in relation to gas bubble stability. J Cereal Sci 22(1):53–61

    Article  Google Scholar 

  • Kralova I, Sjöblom J (2009) Surfactants used in food industry: a review. J Dispers Sci Technol 30(9):1363–1383

    Article  CAS  Google Scholar 

  • Lee S-H, Lefèvre T, Subirade M, Paquin P (2009) Effects of ultra-high pressure homogenization on the properties and structure of interfacial protein layer in whey protein-stabilized emulsion. Food Chem 113(1):191–195

    Article  CAS  Google Scholar 

  • Levich VG (1962) Physicochemical hydrodynamics. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Lobo L, Sverika A (1997) A unique method to measure coalescence occurring during homogenization. In: Paper presented at the proceedings of second world conference on emulsions

    Google Scholar 

  • McCarthy WW (1964) Ultrasonic emulsification. Drug Cosmet Ind 94(6):821–824

    CAS  Google Scholar 

  • McClements DJ (1999) Food emulsions: principles, practice and techniques. CRC Press, Boca Raton, FL

    Google Scholar 

  • McClements DJ (2005) Theoretical analysis of factors affecting the formation and stability of multilayered colloidal dispersions. Langmuir 21(21):9777–9785

    Article  CAS  PubMed  Google Scholar 

  • Mermut O, Lefebvre J, Gray DG, Barrett CJ (2003) Structural and mechanical properties of polyelectrolyte multilayer films studied by AFM. Macromolecules 36(23):8819–8824

    Article  CAS  Google Scholar 

  • Mohan S, Narsimhan G (1997) Coalescence of protein-stabilized emulsions in a high pressure homogenizer. J Colloid Interface Sci. 192:1–15

    Article  CAS  PubMed  Google Scholar 

  • Moreau L, Kim H-J, Decker EA, McClements DJ (2003) Production and characterization of oil-in-water emulsions containing droplets stabilized by β-lactoglobulin-pectin membranes. J Agric Food Chem 51(22):6612–6617

    Article  CAS  PubMed  Google Scholar 

  • Muralidhar R, Ramkrishna D (1986) Analysis of droplet coalescence in turbulent liquid-liquid dispersions. I&EC Fundam 25:554–560

    Article  CAS  Google Scholar 

  • Muralidhar R, Ramkrishna D, Das PK, Kumar R (1988) Coalescence of rigid droplets in a stirred dispersion- II. Band-limited force fluctuations. Chem Eng Sci 43:1559–1568

    Article  CAS  Google Scholar 

  • Murray BS, Dickinson E (1996) Interfacial rheology and the dynamic properties of adsorbed films of food proteins and surfactants. Food Sci Technol Int Tokyo 2(3):131–145

    Article  CAS  Google Scholar 

  • Narsimhan G (2004) Model for drop coalescence in a locally isotropic turbulent flow field. J Colloid Interface Sci 272:197–209

    Article  CAS  PubMed  Google Scholar 

  • Narsimhan G, Goel P (2001) Drop coalescence during emulsion formation in a high pressure homogenizer for tetradecane-in-water emulsion stabilized by sodium dodecyl sulphate. J Colloid Interface Sci 238:420–432

    Article  CAS  PubMed  Google Scholar 

  • Narsimhan G, Wang Z (2005) Stability of thin stagnant film on a solid surface with a viscoelastic air–liquid interface. J Colloid Interface Sci 291(1):296–302

    Article  CAS  PubMed  Google Scholar 

  • Narsimhan G, Gupta JP, Ramkrishna D (1979) A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions. Chem Eng Sci 34:257

    Article  CAS  Google Scholar 

  • Narsimhan G, Ramkrishna D, Gupta JP (1980) Analysis of drop size distributions in lean liquid-liquid dispersions. AIChE J 26:991

    Article  CAS  Google Scholar 

  • Narsimhan G, Neijfelt G, Ramkrishna D (1984) Breakage functions of droplets in agitated liquid-liquid dispersions. AIChE J 30:457

    Article  CAS  Google Scholar 

  • Oakenfull D (1980) Constraints of molecular packing on the size and stability of microemulsion droplets. J Chem Soc Faraday Trans 1: Phys Chem Condens Phases 76:1875–1886

    Article  CAS  Google Scholar 

  • Ogawa S, Decker EA, McClements DJ (2003) Influence of environmental conditions on the stability of oil in water emulsions containing droplets stabilized by lecithin-chitosan membranes. J Agric Food Chem 51(18):5522–5527

    Article  CAS  PubMed  Google Scholar 

  • Okubo T, Suda M (2003) Multilayered adsorption of macrocations and macroanions on colloidal spheres as studied by dynamic light scattering measurements. Colloid Polym Sci 281(8):782–787

    Article  CAS  Google Scholar 

  • Ortega-Rivas E, Juliano P, Yan H (2006) Food powders: physical properties, processing, and functionality. Springer, New York

    Google Scholar 

  • Overbeek JTG (1982) Monodisperse colloidal systems, fascinating and useful. Adv Colloid Interf Sci 15(3–4):251–277. https://doi.org/10.1016/0001-8686(82)80003-1

    Article  CAS  Google Scholar 

  • Pandolfe WD (1995) Effect of premix condition, surfactant concentration, and oil level on the formation of oil-in-water emulsions by homogenization. J Dispers Sci Technol 16(7):633–650

    Article  CAS  Google Scholar 

  • Park M-K, Xia C, Advincula RC, Schütz P, Caruso F (2001) Cross-linked, luminescent spherical colloidal and hollow-shell particles. Langmuir 17(24):7670–7674

    Article  CAS  Google Scholar 

  • Paul BK, Moulik SP (2001) Uses and applications of microemulsions. Curr Sci Bangalore 80(8):990–1001

    CAS  Google Scholar 

  • Peyratout CS, Dähne L (2004) Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed 43(29):3762–3783

    Article  CAS  Google Scholar 

  • Phipps LW (1985) The high pressure dairy homogenizer. The National Institute for Research in Dairy, Reading

    Google Scholar 

  • Rao J, McClements DJ (2011) Food-grade microemulsions, nanoemulsions and emulsions: fabrication from sucrose monopalmitate & lemon oil. Food Hydrocolloids 25(6):1413–1423

    Article  CAS  Google Scholar 

  • Reihs T, Müller M, Lunkwitz K (2003) Deposition of polylelectrolyte complex nano-particles at silica surfaces characterized by ATR-FTIR and SEM. Colloids Surf A: Physicochem Eng Asp 212(1):79–95

    Article  CAS  Google Scholar 

  • Rossier-Miranda FJ, Schroën K, Boom R (2012) Microcapsule production by an hybrid colloidosome-layer-by-layer technique. Food Hydrocolloids 27(1):119–125

    Article  CAS  Google Scholar 

  • Ruckenstein E, Chi JC (1975) Stability of microemulsions. J Chem Soc Faraday Trans II 71:1690–1707. https://doi.org/10.1039/f29757101690

    Article  CAS  Google Scholar 

  • Ruckenstein E, Krishnan R (1980a) Effect of electrolytes and mixtures of surfactants on the oil-water interfacial-tension and their role in formation of micro-emulsions. J Colloid Interface Sci 76(1):201–211. https://doi.org/10.1016/0021-9797(80)90286-6

    Article  CAS  Google Scholar 

  • Ruckenstein E, Krishnan R (1980b) The Equilibrium radius and domain of existence of microemulsion. J Colloid Interface Sci 76:201–211

    Article  CAS  Google Scholar 

  • Rumscheidt FD, Mason SG (1961a) Particle motions in sheared suspensions XII. Deformation and burst of fluid drops in shear and hyperbolic flow. J Colloid Interface Sci 16:238–261

    Article  CAS  Google Scholar 

  • Rumscheidt FD, Mason SG (1961b) J Colloid Interface Sci 16:210

    Google Scholar 

  • Sagis LM, de Ruiter R, Miranda FJR, de Ruiter J, Schroën K, van Aelst AC et al (2008) Polymer microcapsules with a fiber-reinforced nanocomposite shell. Langmuir 24(5):1608–1612

    Article  CAS  PubMed  Google Scholar 

  • Salager J-L, Antón RE, Sabatini DA, Harwell JH, Acosta EJ, Tolosa LI (2005) Enhancing solubilization in microemulsions—state of the art and current trends. J Surfactant Deterg 8(1):3–21

    Article  CAS  Google Scholar 

  • Sathyagal AN, Ramkrishna D, Narsimhan G (1996) Droplet breakage in stirred dispersions. Breakage functions from experimental drop size distributions. Chem Eng Sci 51(9):1377–1391

    Article  CAS  Google Scholar 

  • Schönhoff M (2003) Layered polyelectrolyte complexes: physics of formation and molecular properties. J Phys Condens Matter 15(49):R1781

    Article  Google Scholar 

  • Shahidi F, Han XQ (1993) Encapsulation of food ingredients. Crit Rev Food Sci Nutr 33(6):501–547

    Article  CAS  PubMed  Google Scholar 

  • Singer SJ (1948) Note on an equation of state for linear macromolecules in monolayers. J. Chem. Phys. 16(9):872–876

    Article  CAS  Google Scholar 

  • Spernath A, Yaghmur A, Aserin A, Hoffman RE, Garti N (2002) Food-grade microemulsions based on nonionic emulsifiers: media to enhance lycopene solubilization. J Agric Food Chem 50(23):6917–6922

    Article  CAS  PubMed  Google Scholar 

  • Sukhorukov GB, Donath E, Lichtenfeld H, Knippel E, Knippel M, Budde A, Möhwald H (1998) Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloids Surf A Physicochem Eng Asp 137(1):253–266

    Article  Google Scholar 

  • Surh J, Gu YS, Decker EA, Mcclements DJ (2005) Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes. J Agric Food Chem 53(10):4236–4244

    Article  CAS  PubMed  Google Scholar 

  • Swaisgood HE (1996) food emulsifier and their applications. In: Fennema OR (ed) Food chemistry. Marcel Dekker, Inc., New York, pp 841–878

    Google Scholar 

  • Taylor GI (1932) Proc R Soc Lond A138:41

    Google Scholar 

  • Taylor GI (1934) Proc R Soc Lond A146:501

    Google Scholar 

  • Torza S, Cox RG, Mason SG (1972) Particle motions in sheared suspensions. XXVII. Transient and steady deformation and burst of liquid drops. J Colloid Interface Sci 38(2):395–411

    Article  CAS  Google Scholar 

  • Tsaine L, Walstra P, Cabane B (1996) Transfer of oil between emulsion droplets. J Colloid Interface Sci 184:378–390

    Article  Google Scholar 

  • Uraizee F, Narsimhan G (1991) A surface equation of state for globular proteins at the air-water interface. J Colloid Interface Sci 146(1):169–178

    Article  CAS  Google Scholar 

  • Voigt A, Lichtenfeld H, Sukhorukov GB, Zastrow H, Donath E, Bäumler H, Möhwald H (1999) Membrane filtration for microencapsulation and microcapsules fabrication by layer-by-layer polyelectrolyte adsorption. Ind Eng Chem Res 38(10):4037–4043

    Article  CAS  Google Scholar 

  • Walstra P (1983) Formation of emulsions. In: Becher P (ed) Encyclopedia of emulsion technology, vol 1. Marcel Dekker, New York

    Google Scholar 

  • Walstra P (1993) Principles of emulsion formation. Chem Eng Sci 48(2):333–349

    Article  CAS  Google Scholar 

  • Walstra P, Smulders PE (1998), Emulsion formation, in “Modern aspects of emulsion science”, Binks, B.P. (ed), Royal Society of Chemistry, Cambridge, pp 56–101

    Google Scholar 

  • Winsor PA (1948) Hydrotropy, solubilisation and related emulsification processes. 1–4. Trans Faraday Soc 44(6):376–398. https://doi.org/10.1039/tf9484400376

    Article  CAS  Google Scholar 

  • Xiang N, Lyu Y, Narsimhan G (2016) Characterization of fish oil in water emulsion produced by layer by layer deposition of soy β-conglycinin and high methoxyl pectin. Food Hydrocolloids 52:678–689

    Article  CAS  Google Scholar 

  • Yang W, Trau D, Renneberg R, Yu NT, Caruso F (2001) Layer-by-layer construction of novel biofunctional fluorescent microparticles for immunoassay applications. J Colloid Interface Sci 234(2):356–362

    Article  CAS  PubMed  Google Scholar 

  • Zhong F, Yu M, Luo C, Shoemaker CF, Li Y, Xia S, Ma J (2009) Formation and characterisation of mint oil/S and CS/water microemulsions. Food Chem 115(2):539–544

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesan Narsimhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narsimhan, G., Wang, Z., Xiang, N. (2019). Guidelines for Processing Emulsion-Based Foods. In: Hasenhuettl, G., Hartel, R. (eds) Food Emulsifiers and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-29187-7_15

Download citation

Publish with us

Policies and ethics