Skip to main content

Temporal Variation

  • Chapter
  • First Online:
Integrodifference Equations in Spatial Ecology

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 49))

  • 807 Accesses

Abstract

IDE models naturally allow a certain temporal variation within a generation since they divide each generation into separate growth and dispersal phases. However, so far we have assumed that the growth phases in all generations are identical and that the same holds for the dispersal phases. In realistic environments, external conditions in subsequent generations may vary substantially so that growth and dispersal behavior could differ. In this chapter, we present some theory on and examples of how to formulate and analyze IDEs with a periodically or randomly varying growth function and dispersal kernel. In the periodic case, much of the previous theory for temporally constant environments can be applied to the period map. In the random case, even the formulation of the problem requires substantially different tools from the theory of stochastic processes. We focus again on the two fundamental questions of population persistence and spread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, L. (2010). An introduction to stochastic processes with applications to biology. London: Chapman and Hall/CRC.

    Google Scholar 

  • Bouhours, J., & Lewis, M. (2016). Climate change and integrodifference equations in a stochastic environment. Bulletin of Mathematical Biology, 78, 1866–1903.

    Article  MathSciNet  Google Scholar 

  • Caswell, H., Neubert, M., & Hunter, C. (2011). Demography and dispersal: Invasion speeds and sensitivity analysis in periodic and stochastic environments. Theoretical Ecology, 4, 407–421.

    Article  Google Scholar 

  • Ding, W., Liang, X., & Xu, B. (2013). Spreading speeds of n-season spatially periodic integro-difference equations. Discrete and Continuous Dynamical Systems - Series A, 33(8), 3443–3472.

    Article  MathSciNet  Google Scholar 

  • Ellner, S. (1984). Asymptotic behavior of some stochastic difference equation population models. Journal of Mathematical Biology, 19, 169–200.

    Article  MathSciNet  Google Scholar 

  • Ellner, S., & Schreiber, S. (2012). Temporally variable dispersal and demography can accelerate the spread of invading species. Theoretical Population Biology, 82(4), 283–298.

    Article  Google Scholar 

  • Gharouni, A., Barbeau, M., Chassé, J., Wang, L., & Watmough, J. (2017). Stochastic dispersal increases the rate of upstream spread: A case study with green crabs on the northwest atlantic coast. PLoS ONE, 12(9), e0185671.

    Article  Google Scholar 

  • Gilioli, G., Pasquali, S., Tramontini, S., & Riolo, F. (2013). Modelling local and long-distance dispersal of invasive chestnut gall wasp in Europe. Ecological Modelling, 263, 281–290.

    Article  Google Scholar 

  • Hardin, D., Takáč, P., & Webb, G. (1988a). Asymptotic properties of a continuous-space discrete-time population model in a random environment. Journal of Mathematical Biology, 26, 361–374.

    Article  MathSciNet  Google Scholar 

  • Hardin, D., Takáč, P., & Webb, G. (1988b). A comparison of dispersal strategies for survival of spatially heterogeneous populations. SIAM Journal on Applied Mathematics, 48, 1396–1423.

    Article  MathSciNet  Google Scholar 

  • Jacobs, G., & Sluckin, T. (2015). Long-range dispersal, stochasticity and the broken accelerating wave of advance. Theoretical Population Biology, 100, 39–55.

    Article  Google Scholar 

  • Jacobsen, J., & McAdam, T. (2014). A boundary value problem for integrodifference equation models with cyclic kernels. Discrete & Continuous Dynamical Systems - Series B, 19(10), 3139–3207.

    MATH  Google Scholar 

  • Jacobsen, J., Jin, Y., & Lewis, M. (2015). Integrodifference models for persistence in temporally varying river environments. Journal of Mathematical Biology, 70, 549–590.

    Article  MathSciNet  Google Scholar 

  • Kot, M., Medlock, J., Reluga, T., & Walton, D. (2004). Stochasticity, invasions, and branching random walks. Theoretical Population Biology, 66, 175–184.

    Article  Google Scholar 

  • Latore, J., Gould, P., & Mortimer, A. (1999). Effects of habitat heterogeneity and dispersal strategies on population persistence in annual plants. Ecological Modelling, 123, 127–139.

    Article  Google Scholar 

  • Lewis, M. (2000). Spread rate for a nonlinear stochastic invasion. Journal of Mathematical Biology, 41, 430–454.

    Article  MathSciNet  Google Scholar 

  • Lewis, M., & Pacala, S. (2000). Modeling and analysis of stochastic invasion processes. Journal of Mathematical Biology, 41, 387–429.

    Article  MathSciNet  Google Scholar 

  • Lewis, M., Petrovskii, S., & Potts, J. (2016). The mathematics behind biological invasions. Berlin: Springer.

    Book  Google Scholar 

  • Mahdjoub, T., & Menu, F. (2008). Prolonged diapause: A trait increasing invasion speed? Journal of Theoretical Biology, 251, 317–330.

    Article  MathSciNet  Google Scholar 

  • Meyn, S., & Tweedie, R. (2009). Markov chains and stochastic stability. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Neubert, M., & Caswell, H. (2000a). Demography and dispersal: Calculation and sensitivity analysis of invasion speeds for structured populations. Ecology, 81(6), 1613–1628.

    Article  Google Scholar 

  • Neubert, M., Kot, M., & Lewis, M. (2000). Invasion speeds in fluctuating environments. Proceedings of the Royal Society of London - Series B, 267, 1603–1610.

    Google Scholar 

  • Neubert, M., & Parker, I. (2004). Projecting rates of spread for invasive species. Risk Analysis, 24(4), 817–831.

    Article  Google Scholar 

  • Reimer, J., Bonsall, M., & Maini, P. (2017). The critical patch-size of stochastic population models. Journal of Mathematical Biology, 74, 755–782.

    Article  MathSciNet  Google Scholar 

  • Schreiber, S., & Ryan, M. (2011). Invasion speeds for structured populations in fluctuating environments. Theoretical Ecology, 4(4), 423–434.

    Article  Google Scholar 

  • Snyder, R. (2003). How denographic stochasticity can slow biological invasions. Ecology, 84(5), 1333–1339.

    Article  Google Scholar 

  • Zhou, Y., & Fagan, W. (2017). A discrete-time model for population persistence in habitats with time-varying sizes. Journal of Mathematical Biology, 75(3), 649–704.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lutscher, F. (2019). Temporal Variation. In: Integrodifference Equations in Spatial Ecology. Interdisciplinary Applied Mathematics, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-29294-2_16

Download citation

Publish with us

Policies and ethics