Skip to main content

Symmetry Constrained Machine Learning

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1038))

Included in the following conference series:

Abstract

Symmetry, a central concept in understanding the laws of nature, has been used for centuries in physics, mathematics, and chemistry, to help make mathematical models tractable. Yet, despite its power, symmetry has not been used extensively in machine learning, until rather recently. In this article we show a general way to incorporate symmetries into machine learning models. We demonstrate this with a detailed analysis on a rather simple real world machine learning system - a neural network for classifying handwritten digits, lacking bias terms for every neuron. We demonstrate that ignoring symmetries can have dire over-fitting consequences, and that incorporating symmetry into the model reduces over-fitting, while at the same time reducing complexity, ultimately requiring less training data, and taking less time and resources to train.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bag of words methods represent text by the set of words or phrases used in it.

  2. 2.

    A feature map is a function which maps an input data vector to a vector space to be consumed directly by a machine learning model. For instance, starting with inputs \(x_{1,2}\), a feature map could generate the product \(x_1 x_2\).

  3. 3.

    The original repository for this dataset [13] is http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits.

References

  1. LeCun, Y., et al.: Connectionism in Perspective, pp. 143–155 (1989)

    Google Scholar 

  2. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Shape, Contour and Grouping in Computer Vision, pp. 319–345. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., Jackel, L.D.: Advances in Neural Information Processing Systems, pp. 396–404 (1990)

    Google Scholar 

  4. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Proc. IEEE 86(11), 2278 (1998)

    Article  Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  6. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 609–616. ACM (2009)

    Google Scholar 

  7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  8. Gens, R., Domingos, P.M.: Advances in Neural Information Processing Systems, pp. 2537–2545 (2014)

    Google Scholar 

  9. Dieleman, S., De Fauw, J., Kavukcuoglu, K.: arXiv preprint arXiv:1602.02660 (2016)

  10. Cohen, T., Welling, M.: International Conference on Machine Learning, pp. 2990–2999 (2016)

    Google Scholar 

  11. Henriques, J.F., Vedaldi, A.: arXiv preprint arXiv:1609.04382 (2016)

  12. Gens, R., Domingos, P.M.: Deep symmetry networks. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 2537–2545. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5424-deep-symmetry-networks.pdf

  13. Dheeru, D., Taniskidou, E.K.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: J. Mach. Learn. Res. 12, 2825 (2011)

    MathSciNet  Google Scholar 

  15. Hornik, K., Stinchcombe, M., White, H.: Neural Netw. 2(5), 359 (1989)

    Article  Google Scholar 

  16. Mehta, P., Schwab, D.J.: An exact mapping between the variational renormalization group and deep learning. arXiv preprint arXiv:1410.3831 (2014)

  17. Novikov, D.S., Veraart, J., Jelescu, I.O., Fieremans, E.: NeuroImage 174, 518 (2018)

    Article  Google Scholar 

  18. Nambu, Y.: Phys. Rev. 117(3), 648 (1960)

    Article  MathSciNet  Google Scholar 

  19. Goldstone, J.: Il Nuovo Cimento (1955–1965) 19(1), 154 (1961)

    Google Scholar 

  20. Goldstone, J., Salam, A., Weinberg, S.: Phys. Rev. 127(3), 965 (1962)

    Article  MathSciNet  Google Scholar 

  21. Shwartz-Ziv, R., Tishby, N.: arXiv preprint arXiv:1703.00810

  22. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Symposium on Geometry Processing, vol. 6, pp. 156–164 (2003)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Miles Stoudenmire, Daniel Malinow, David J. Bergman, and Dmitry S. Novikov, for useful feedback on the ideas presented in this manuscript. In particular, discussions with Dmitry S. Novikov inspired exploring the fitting parameter degeneracy that occurs when symmetry is not enforced upon a fitting model. The author would also like to thank the UCI machine learning repository (http://archive.ics.uci.edu/ml/index.php) for making the dataset used in this work available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron L. Bergman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bergman, D.L. (2020). Symmetry Constrained Machine Learning. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1038. Springer, Cham. https://doi.org/10.1007/978-3-030-29513-4_37

Download citation

Publish with us

Policies and ethics