Skip to main content

Self-standing Nanoarchitectures

  • Chapter
  • First Online:
Self-standing Substrates

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 611 Accesses

Abstract

Despite there are structures invisible for the human eye, they mastered the world of advanced electronic devices, sensors, novel cosmetics or drugs. When the dimensions of the materials go down to the nanometres scale, their properties change dramatically comparing to the observable objects. Because of their tiny size, they gained the name of nanomaterials but simultaneously their importance has significantly grown up. Nanomaterials exhibit superb features such as a distinctive catalytic activity, hydrophobicity, photoconversion activity and biological affinity. Following that, even a small amount of nanomaterials is sufficient to provide unusual properties to the final products such as coatings, active layers in solar cells, clothes, electrodes and electrolytes used for energy storage devices. Owing to the rapid development in the synthesis methods and characterization techniques, especially those used for morphology inspection, we can investigate them in details on the molecular scale and describe the mechanism that stays behind improved antimicrobiological activity, hydrophobicity, capacitance or catalytic properties. Despite the number of usable elements is limited, the diversity of morphologies, namely rods, particles, tubes, planes and the possibility of heterostructures formation, provides researchers the wide room for maneuverer. Sometimes, only small change in the material geometry, structure or a little amount of introduced dopant atoms is enough to obtain completely new nanomaterial that has not been known so far. Therefore, we should not be surprised how fast surrounding environment is changing and our everyday life is supported by the novelties from the nano world. The aim of this chapter is to present the diversity of nanomaterials taking into account their dimensions, shape and composition. Herein, particles, tubes, wires, pores, walls, exhibiting at least one dimension within the nanoscale will be evoked. Moreover, the nanostructures that morphology reminds well known objects from nature are discussed. The description of some interesting examples is supported by the extraordinary SEM images illustrating the beauty unavailable for naked eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi, E., Aval, S.F., Akbarzadeh, A., Milani, M., Nasrabadi, H.T., Joo, S.W., Hanifehpour, Y., Nejati-Koshki, K., Pashaei-Asl, R.: Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett. 9, 247–257 (2014). https://doi.org/10.1186/1556-276X-9-247

    Article  CAS  Google Scholar 

  2. Abellan, G., Amo-Ochao, P., Fierro, J.L.G., Ribera, A., Coronado, E., Zamora, F.: Self-assembly of 1D/2D hybrid nanostructures consisting of a Cd(II) coordination polymer and NiAl-layered double hydroxides. Polymers 8, 5, 13 (2016). https://doi.org/10.3390/polym8010005

    Article  Google Scholar 

  3. Ali, S., Hannula, S.: Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes. J. Solid State Chem. 249, 189–198 (2017). https://doi.org/10.1016/j.jssc.2017.03.007

    Article  CAS  Google Scholar 

  4. Ariga, K., Watanabe, S., Mori, T., Takeya, J.: Soft 3D nanoarchitecures. NPG Asia Mater. 10, 90–106 (2018). https://doi.org/10.1038/s41427-018-0022-

    Article  Google Scholar 

  5. Arunchandran, C., Ramya, S., George, R.P., Kamachi Mudali, U.: Corrosion inhibitor storage and release property of TiO2 nanotube powder synthesized by rapid breakdown anodization method. Mater. Res. Bull. 48, 635–639 (2013). https://doi.org/10.1016/j.materresbull.2012.11.034

    Article  CAS  Google Scholar 

  6. Beaudry, A.L., Tucker, R.T., LaForge, J.M., Taschuk, M.T., Brett, M.J.: Indium tin oxide nanowhisker morphology control by vapour-liquid-solid glancing angle deposition. Nanotechnology 23, 105608 (2012). https://doi.org/10.1088/0957-4484/23/10/105608

    Article  CAS  Google Scholar 

  7. Benz, F., Chikkaraddy, R., Salmon, A., Ohadi, H., de Nijs, B., Mertens, J., Carnegie, C., Bowman, R.W., Baumberg, J.J.: SERS of individual nanoparticles on a mirror: size does matter, but so does shape. J. Phys. Chem. Lett. 7, 2264–2269 (2016). https://pubs.acs.org/doi/10.1021/acs.jpclett.6b00986

  8. Berg, A., Caroff, P., Shahid, N., Lockrey, M.N., Yuan, X., Borgström, M.T., Tan, H.H., Jagadish, C.: Growth and optical properties of InxGa1−x P nanowires synthesized by selective-area epitaxy. Nano Res. 10, 672–682 (2017). https://doi.org/10.1007/s12274-016-1325-1

    Article  CAS  Google Scholar 

  9. Bhattarai, S.R., Derry, P.J., Aziz, K., Singh, P.K., Khoo, A.M., Chadha, A.S., Liopo, A., Zubarevc, E.R., Krishnan, S.: Gold nanotriangles: scale up and X-ray radiosensitization effects in mice. Nanoscale 9, 5085–5093 (2017). https://doi.org/10.1039/c6nr08172j

    Article  CAS  Google Scholar 

  10. Bigall, N.C., Härtling, T., Klose, M., Simon, P., Eng, L.M., Eychmüller, A.: Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties. Nano Lett. 8, 4588–4592 (2008). https://pubs.acs.org/doi/10.1021/nl802901t

    Article  CAS  Google Scholar 

  11. Biswas, S., Doherty, J., Saladukha, D., Ramasse, Q., Majumdar, D., Upmanyu, M., Singha, A., Ochalski, T., Morris, M.A., Holmes, J.D.: Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1–xSnx nanowires. Nat. Commun. 7, 11405 (2016). https://doi.org/10.1038/ncomms11405

    Article  CAS  Google Scholar 

  12. Bosman, A.W., Janssen, H.M., Meijer, E.W.: About dendrimers: structure, physical properties, and applications. Chem. Rev. 99, 1665–1688 (1999). https://pubs.acs.org/doi/10.1021/cr970069y

    Article  CAS  Google Scholar 

  13. Brus, L.E.: Electron-electron and electron-hole interactions is small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403 (1984). https://doi.org/10.1063/1.447218

    Article  CAS  Google Scholar 

  14. Chen, N., Hou, J., Lu, K.: Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors. Langmuir 29, 5911–5919 (2013). https://doi.org/10.1021/la400586r

    Article  CAS  Google Scholar 

  15. Cheng, L.-C., Huang, J.-H., Chen, H.M., Lai, T.-C., Yang, K.-Y., Liu, R.-S., Hsiao, M., Chen, C.-H., He, L.-J., Tsai, D.P.: Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J. Mater. Chem. 22, 2244–2253 (2012). https://doi.org/10.1039/c1jm13937a

    Article  Google Scholar 

  16. Chia, X., Pumera, M.: Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909–921 (2018). https://doi.org/10.1038/s41929-018-0181-7

    Article  CAS  Google Scholar 

  17. Choi, K., Chang, S.: Effect of structure morphologies on hydrogen gas sensing by ZnO nanotubes. Mater. Lett. 230, 48–52 (2018). https://doi.org/10.1016/j.matlet.2018.07.031

    Article  CAS  Google Scholar 

  18. Cui, Y., van Dam, D., Mann, S.A., van Hoof, N.J.J., van Veldhoven, P.J., Garnett, E.C., Bakkers, E.P.A.M., Haverkort, J.E.M.: Boosting solar cell photovoltage via nanophotonic engineering. Nano Lett. 16, 6467–6471 (2016). https://doi.org/10.1021/acs.nanolett.6b02971

    Article  CAS  Google Scholar 

  19. Dai, L., Mo, S., Qin, Q., Zhao, X., Zheng, N.: Carbon monoxide-assisted synthesis of ultrathin PtCu 3 alloy wavy nanowires and their enhanced electrocatalysis. Small 12, 1572–1577 (2016). https://doi.org/10.1002/smll.201502741

    Article  CAS  Google Scholar 

  20. Dai, E., Xu, J., Qiu, J., Liu, S., Chen, P., Liu, Y.: Co@Carbon and Co3O4@Carbon nanocomposites derived from a single MOF for supercapacitors. Sci. Rep. 7, 12588 (2017). https://doi.org/10.1038/s41598-017-12733-5

    Article  CAS  Google Scholar 

  21. Dou, X., Sabba, D., Mathews, N., Wong, L.H., Lam, Y.M., Mhaisalkar, S.: Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode material for efficient dye-sensitized solar cells. Chem. Mater. 23, 3938–3945 (2011). https://pubs.acs.org/doi/abs/10.1021/cm201366z

    Article  CAS  Google Scholar 

  22. Ealias, A.M., Saravanakumar, M.P.: A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 263, 032019 (2017). https://doi.org/10.1088/1757-899X/263/3/032019

    Article  Google Scholar 

  23. Ekimov, A.I., Efros, Al.L., Onushchenko, A.A.: Quantum size effect in semiconductor microcrystals. Solid State Commun. 56, 921–924 (1985). https://doi.org/10.1016/S0038-1098(85)80025-9

    Article  CAS  Google Scholar 

  24. Flomin, K., Plante, I.J.-L., Moshofsky, B., Diab, M., Mokari, T.: Selective growth of metal particles on ZnO nanopyramids via a one-pot synthesis. Nanoscale 6, 1335–1339 (2014). https://doi.org/10.1039/C3NR05661A

    Article  CAS  Google Scholar 

  25. Fu, L., Kane, C.L.: Superconducting proximity effect and Majorana Fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008). https://doi.org/10.1103/PhysRevLett.100.096407

    Article  CAS  Google Scholar 

  26. Gangadoo, S., Stanley, D., Hughes, R.J., Moore, R.J., Chapman, J.: The synthesis and characterisation of highly stable and reproducible selenium nanoparticles. Inorg. Nano-Metal Chem. 47, 1568–1576 (2017). https://doi.org/10.1080/24701556.2017.1357611

    Article  CAS  Google Scholar 

  27. Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331–3334 (2001). https://doi.org/10.1557/JMR.2001.0457

    Article  CAS  Google Scholar 

  28. Greeley, J., Stephens, I.E.L., Bondarenko, A.S., Johansson, T.P., Hansen, H.A., Jaramillo, T.F., Rossmeisl, J., Chorkendorff, I., Nørskov, J.K.: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009). https://doi.org/10.1038/nchem.367

    Article  CAS  Google Scholar 

  29. Haggren, T., Shah, A., Autere, A., Kakko, J.-P., Dhaka, V., Kim, M., Huhtio, T., Sun, Z., Lipsanen, H.: Nanowire encapsulation with polymer for electrical isolation and enhanced optical properties. Nano Res. 10, 2657–2666 (2017). https://doi.org/10.1007/s12274-017-1468-8

    Article  CAS  Google Scholar 

  30. Hahm, R., Macak, J.M., Schmuki, P.: Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes. Electrochem. Commun. 9, 947–952 (2007). https://doi.org/10.1016/j.elecom.2006.11.037

    Article  CAS  Google Scholar 

  31. Han, Z., Fina, A.: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36, 914–944 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.004

    Article  CAS  Google Scholar 

  32. Han, T., Nag, A., Mukhopadhyay, S.C., Xu, Y.: Carbon nanotubes and its gas-sensing applications: a review. Sens. Actuators, A 291, 107–143 (2019). https://doi.org/10.1016/j.sna.2019.03.053

    Article  CAS  Google Scholar 

  33. Hattori, A.N., Nakazawa, H., Nakamura, T., Tanaka, H.: Fabrication of the electric double layer transistor with (La, Pr, Ca)MnO3 nanowall wire channel. Mod. Phys. Lett. B 32, 1840058 (2018). https://doi.org/10.1142/S0217984918400584

    Article  CAS  Google Scholar 

  34. Hu, R., Zhang, X., Zhao, Z., Zhu, G., Chen, T., Fu, T., Tan, W.: DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew. Chem. Int. Ed. 53, 5821–5826 (2014). https://doi.org/10.1002/anie.201400323

    Article  CAS  Google Scholar 

  35. Hu, Z., Li, S., Cheng, P., Yu, W., Li, R., Shao, X., Lin, W., Yuan, D.: N, P-co-doped carbon nanowires prepared from bacterial cellulose for supercapacitor. J. Mater. Sci. 51, 2627–2633 (2016). https://doi.org/10.1007/s10853-015-9576-x

    Article  Google Scholar 

  36. Huang, J., Zhang, K., Lai, Y.: Fabrication, modification, and emerging applications of TiO2 nanotube arrays by electrochemical synthesis: a review. Int. J. Photoenergy 2013, 1–19 (2013). https://doi.org/10.1155/2013/761971

    Article  CAS  Google Scholar 

  37. Huang, X., Zhang, P., Lin, E., Wang, P., Mei, M., Huang, Q., Jiao, J., Zhao, Q.: Fabrication and optically pumped lasing of plasmonic nanolaser with regular ZnO/GaN nanoheterojunction array. Appl. Phys. A 123, 605 (2017). https://doi.org/10.1007/s00339-017-1211-z

    Article  CAS  Google Scholar 

  38. Ichikawa, Y., Yoshiba, S., Hirai, M., Konagai, M.: Fabrication of two-dimensional quantum well structure consisting of vertical Si nano-wall arrays. J. Electrochem. Soc. 164, H293–H298 (2017). https://doi.org/10.1149/2.0251706jes

    Article  CAS  Google Scholar 

  39. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  40. Ji, Q., Guo, C., Yu, X., Ochs, C.J., Hill, J.P., Caruso, F., Nakazawa, H., Ariga, K.: Flake shell capsules: adjustable inorganic structures. Small 8, 2345–2349 (2012). https://doi.org/10.1002/smll.201200317

    Article  CAS  Google Scholar 

  41. Jiji, S.G., Gopchandran, K.G.: Virus shaped gold nanoparticles with tunable near infrared plasmon as SERS substrates. Mater. Res. Express 2, 075005 (2015)

    Article  Google Scholar 

  42. Ke, Q., Zheng, M., Liu, H., Guan, C., Mao, L., Wang, J.: 3D TiO2@Ni(OH)2 core-shell arrays with tunable nanostructure for hybrid supercapacitor application. Nat. Sci. Rep. 5, 13940 (2015). https://doi.org/10.1038/srep13940

    Article  Google Scholar 

  43. Khan, I., Saeed, K., Khan, I.: Nanoparticles: properties, applications and toxicities. Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  Google Scholar 

  44. Kim, S.-H., Shim, G.-I., Choi, S.-Y.: Fabrication of Nb-doped ZnO nanowall structure by RF magnetron sputter for enhanced gas-sensing properties. J. Alloy. Compd. 698, 77–86 (2017). https://doi.org/10.1016/j.jallcom.2016.11.377

    Article  CAS  Google Scholar 

  45. Kim, J., da Silva, W.J., bin Mohd Yusoff, A.R., Jang, J.: Organic devices based on nickel nanowires transparent electrode. Sci. Rep. 6, 19813 (2016). https://doi.org/10.1038/srep19813

  46. Kim, J.W., Jeon, H.-J., Lee, C.-L., Ahn, C.W.: Fabrication of three-dimensional hybrid nanostructure-embedded ITO and its application as a transparent electrode for high-efficiency solution processable organic photovoltaic devices. Nanoscale 9, 3033–3039 (2017). https://doi.org/10.1039/c6nr06552

  47. Kim, S.-W., Kim, K.-S., Park, M., Nah, W., Kim, D.U., Lee, C.-R., Jung, S.-B., Kim, J.-W.: 1.4 µm-thick transparent radio frequency transmission lines based on instant fusion of polyethylene terephthalate through surface of Ag nanowires. Electron. Mater. Lett. 14, 599–609 (2018). https://doi.org/10.1007/s13391-018-0069-3

    Article  CAS  Google Scholar 

  48. Koenigsmann, C., Semple, D.B., Sutter, E., Tobierre, S.E., Wong, S.S.: Ambient synthesis of high-quality ruthenium nanowires and the morphology-dependent electrocatalytic performance of platinum-decorated ruthenium nanowires and nanoparticles in the methanol oxidation reaction. ACS Appl. Mater. Interfaces 5, 5518–5530 (2013). https://doi.org/10.1021/am4007462

    Article  CAS  Google Scholar 

  49. Kumar, S., Rani, R., Dilbaghi, N., Tankeshwar, T., Kim, K.: Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 46, 158–196 (2017). https://doi.org/10.1039/C6CS00517A

    Article  CAS  Google Scholar 

  50. Lai, C.H., Wang, G.-A., Ling, T.-K., Wang, T.-J., Chiu, P.-K., Chau, Y.-F.C., Huang, C.-C., Chiang, H.-P.: Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial. Sci. Rep. 7, 5446 (2017). https://doi.org/10.1038/s41598-017-05939-0

  51. Lee, W., Schwirn, K., Steinhart, M., Pippel, E., Scholz, R., Gosels, U.: Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat. Nanotechnol. 3, 234–239 (2008). https://doi.org/10.1038/nnano.2008.54

    Article  CAS  Google Scholar 

  52. Lee, H.B., Yoo, Y.M., Han, Y.-H.: Characteristic optical properties and synthesis of gold-silica core-shell colloids. Scripta Mater. 55, 1127–1129 (2006). https://doi.org/10.1016/j.scriptamat.2006.08.044

    Article  CAS  Google Scholar 

  53. Lee, K., Mazare, A., Schmuki, P.: One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385–9454 (2014). https://doi.org/10.1021/cr500061m

    Article  CAS  Google Scholar 

  54. Lee, W., Park, S.: Porous Anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 114, 7487–7556 (2014). https://doi.org/10.1021/cr500002z

    Article  CAS  Google Scholar 

  55. Lekawa-Raus, A., Patmore, J., Kurzepa, Ł., Bulmer, J., Kozioł, K.: Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Func. Mater. 24, 3661–3682 (2014). https://doi.org/10.1002/adfm.201303716

    Article  CAS  Google Scholar 

  56. Lentz, C.M., Samuel, B.A., Foley, H.C., Haque, M.A.: Synthesis and characterization of glassy carbon nanowires. J. Nanomater. 2011, 1–8 (2011). https://doi.org/10.1155/2011/129298

    Article  CAS  Google Scholar 

  57. Lewis, E.A., Marcinkowski, M.D., Murphy, C.J., Liriano, M.L., Sykes, E.C.H.: Hydrogen dissociation, spillover, and desorption from Cu-supported Co nanoparticles. J. Phys. Chem. Lett. 5, 3380–3385 (2014). https://doi.org/10.1021/jz5016789

    Article  CAS  Google Scholar 

  58. Lin, W.-C., Yang, W.-D., Huang, I.-L., Wu, T.-S., Chung, Z.-J.: Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2−xNx catalyst. Energy Fuels 23, 2192–2196 (2009). https://doi.org/10.1021/ef801091p

    Article  CAS  Google Scholar 

  59. Liu, X., Atwater, M., Wang, J., Huo, Q.: Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B 58, 3–7 (2007). https://doi.org/10.1016/j.scriptamat.2006.08.044

    Article  CAS  Google Scholar 

  60. Liu, Y., Chen, J., Du, M., Wang, X., Ji, X., He, Z.: The preparation of du-al-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker. Biosens. Bioelectron. 92, 68–73 (2017). https://doi.org/10.1016/j.bios.2017.02.004

    Article  CAS  Google Scholar 

  61. Liu, J., Qiao, S.Z., Chen, J.S., Lou, X.W., Xing, X., Lu, G.Q.: Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 47, 12578 (2011). https://doi.org/10.1039/C1CC13658E

    Article  CAS  Google Scholar 

  62. Liu, D., Zhang, C., Yu, Y., Shi, Y., Yu, Y., Niu, Z., Zhang, B.: Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Research 11, 603–613 (2018). https://doi.org/10.1007/s12274-017-1670-8

    Article  CAS  Google Scholar 

  63. Liu, R., Duay, J., Lee, S.B.: Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem. Commun. 47, 1384–1404 (2011). https://doi.org/10.1039/C0CC03158E

    Article  CAS  Google Scholar 

  64. Long, J., Wang, W., Fu, S., Liu, L.: Hierarchical architectures of wrinkle-like ZnFe2O4 nanosheet-enwrapped ZnO nanotube arrays for remarkably photoelectrochemical water splitting to produce hydrogen. J. Colloid Interface Sci. 536, 408–413 (2019). https://doi.org/10.1016/j.jcis.2018.10.074

    Article  CAS  Google Scholar 

  65. Lu, H., Carroll, G.M., Neale, N.R., Beard, M.C.: Infrared quantum dots: progress, challenges and opportunities. ACS Nano 13, 939–953 (2019). https://doi.org/10.1021/acsnano.8b09815

  66. Manolopoulos, D.E., Fowler, P.W.: Structural proposals for endohedral metal-fullerene complexes. Chem. Phys. Lett. 187, 1–7 (1991). https://doi.org/10.1016/0009-2614(91)90475-O

    Article  CAS  Google Scholar 

  67. Merenkov, I.S., Myshenkov, M.S., Zhukov, Y.M., Sato, Y., Frolova, T.S., Danilov, D.V., Kasatkin, I.A., Medvedev, O.S., Pushkarev, R.V., Sinitsyna, O.I., Terauchi, M., Zvereva, I.A., Kosinova, M.L., Ostrikov, K.: Orientation-controlled, low-temperature plasma growth and applications of h-BN nanosheets. Nano Res. 12, 91–99 (2019). https://doi.org/10.1007/s12274-018-2185-7

    Article  CAS  Google Scholar 

  68. Mikkelsen, A., Lundgren, E.: Surface science of free standing semiconductor nanowires. Surf. Sci. 607, 97–2015 (2013). https://doi.org/10.1016/j.susc.2012.08.002

    Article  CAS  Google Scholar 

  69. Mohamed, A.: Synthesis, characterization and applications carbon nanofibers. In: Carbon-Based Nanofillers and Their Rubber Nanocomposites, pp. 243–257 (2019). https://doi.org/10.1016/B978-0-12-813248-7.00008-0

    Chapter  Google Scholar 

  70. Mooij, J.E., Schön, G., Shnirman, A., Fuse, T., Harmans, C.J.P.M., Rotzinger, H., Verbruggen, A.H.: Superconductor–insulator transition in nanowires and nanowire arrays. New J. Phys. 17, 033006 (2015). https://doi.org/10.1088/1367-2630/17/3/033006

    Article  CAS  Google Scholar 

  71. Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P.: Signatures of Majorana Fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012). https://doi.org/10.1126/science.1222360

    Article  CAS  Google Scholar 

  72. N. Ra. Je. Hynes, R. Sankaranarayanan, M. Kathiresan, P. Senthamaraikannan, Anish Khan, Abdullah Mohamed Asiri, Imran Khan, Synthesis, properties, and characterization of carbon nanotube-reinforced metal matrix composites, 27-Nanocarbon and its Composites (2019) 805–830, https://doi.org/10.1016/B978-0-08-102509-3.00027-4

    Chapter  Google Scholar 

  73. Nozik, A.J., Beard, M.C., Luther, J.M., Law, M., Ellingson, R.J., Johnson, J.C.: Semiconductor quantum dots and quantum dots arrays and applications of multiple excitation generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010). https://doi.org/10.1021/cr900289f

    Article  CAS  Google Scholar 

  74. Ozkan, S., Nguyen, N.T., Mazare, A., Schmuki, P.: Optimized spacing between TiO2 nanotubes for enhanced light harvesting and charge transfer. Chem. Electro. Chem. 5, 1–9 (2018). https://doi.org/10.1002/celc.201801136

    Article  CAS  Google Scholar 

  75. Paradise, M., Goswami, T.: Carbon nanotubes—production and industrial applications. Mater. Des. 28, 1477–1489 (2007). https://doi.org/10.1016/j.matdes.2006.03.008

    Article  CAS  Google Scholar 

  76. Pokropivny, V.V., Skorokhod, V.V.: Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C Biomim. Mater. Sens. Syst. 27, 990–993 (2007). https://doi.org/10.1016/j.msec.2006.09.023

    Article  CAS  Google Scholar 

  77. Primo, A., Marino, T., Corma, A., Molinari, R., García, H.: Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. J. Am. Chem. Soc. 133, 6930–6933 (2011). https://doi.org/10.1021/ja2011498

    Article  CAS  Google Scholar 

  78. Radloff, C., Halas, N.J.: Plasmonic properties of concentric nanoshells. Nano Lett. 4, 1323–1327 (2004). https://pubs.acs.org/doi/10.1021/nl049597x

    Article  CAS  Google Scholar 

  79. Raphey, V.R., Henna, T.K., Nivitha, K.P., Mufeedha, P., Sabu, C., Pramod, K.: Advanced biomedical applications of carbon nanotube. Mater. Sci. and Eng. C 100, 616–630 (2019). https://doi.org/10.1016/j.msec.2019.03.043

    Article  CAS  Google Scholar 

  80. Regonini, D., Bowen, C.R., Jaroenworaluck, A., Stevens, R.: A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R Rep. 74, 377–406 (2013). https://doi.org/10.1016/j.mser.2013.10.001

    Article  Google Scholar 

  81. Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., Lovley, D.R.: Extracellular electron transfer via microbial nanowires. Nature 435, 1098 (2005). https://doi.org/10.1038/nature03661

    Article  CAS  Google Scholar 

  82. Russo, P., Xiao, M., Zhou, N.Y.: Carbon nanowalls: a new material for resistive switching memory devices. Carbon 120, 54–62 (2017). https://doi.org/10.1016/j.carbon.2017.05.004

    Article  CAS  Google Scholar 

  83. Samadipakchin, P., Mortaheb, H.R., Zolfaghari, A.: ZnO nanotubes: preparation and photocatalytic performance evaluation. J. Photochem. Photobiol. A Chem. 337, 91–99 (2017). https://doi.org/10.1016/j.jphotochem.2017.01.018

    Article  CAS  Google Scholar 

  84. Sannicolo, T., Lagrange, M., Cabos, A., Celle, C., Simonato, J.-P., Bellet, D.: Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12, 6052–6075 (2016). https://doi.org/10.1002/smll.201602581

    Article  CAS  Google Scholar 

  85. Seo, H., Jung, Y., Jee, S., Yang, J.M., Lee, J.: Compositionally bilayered feature of interfacial voids in a porous anodic alumina template directly formed on Si. Scripta Mater. 57, 968–971 (2007). https://doi.org/10.1016/j.scriptamat.2007.06.067

    Article  CAS  Google Scholar 

  86. Shen, W., Zhang, J., Wang, S., Du, H., Tang, Y.: Improve the performance of the quantum dot sensitized ZnO nanotube solar cells with inserting ZnS-MnS composites layers. J. Alloy. Compd. 787, 751–758 (2019). https://doi.org/10.1016/j.jallcom.2019.02.108

    Article  CAS  Google Scholar 

  87. Smith, J.T., Hang, Q., Franklin, A.D., Janes, D.B., Sands, T.D.: Highly ordered diamond and hybrid triangle-diamond patterns in porous anodic alumina thin films. Appl. Phys. Lett. 93, 1–3 (2008). https://doi.org/10.1063/1.2957991

    Article  CAS  Google Scholar 

  88. Sofiah, A.G.N., Samykano, M., Kadirgama, K., Mohan, R.V., Lah, N.A.C.: Metallic nanowires: mechanical properties—theory and experiment. Appl. Mater. Today 11, 320–337 (2018). https://doi.org/10.1016/j.apmt.2018.03.004

    Article  Google Scholar 

  89. Sulka, G.D., Kapusta-Kołodziej, J., Brzózka, A., Jaskuła, M.: Fabrication of nanoporous TiO2 by electrochemical anodization. Electrochem. Acta 55, 4359–4367 (2010). https://doi.org/10.1016/j.electacta.2009.12.053

    Article  CAS  Google Scholar 

  90. Tan, Y., Adhikari, R.Y., Malvankar, N.S., Pi, S., Ward, J.E., Woodard, T.L., Nevin, K.P., Xia, Q., Tuominen, M.T., Lovley, D.R.: Synthetic biological protein nanowires with high conductivity. Small 12, 4481–4485 (2016). https://doi.org/10.1002/smll.201601112

    Article  CAS  Google Scholar 

  91. Tanaka, A., Hashimoto, K., Kominami, H.: Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J. Am. Chem. Soc. 136, 586–589 (2014). https://doi.org/10.1021/ja410230u

    Article  CAS  Google Scholar 

  92. Tang, N., Wang, W., You, H., Zhai, Z., Hilario, J., Zeng, L., Zhang, L.: Morphology tuning of porous CoO nanowall towards enhanced electrochemical performance as supercapacitors electrodes. Catal. Today 330, 240–245 (2019). https://doi.org/10.1016/j.cattod.2018.03.024

    Article  CAS  Google Scholar 

  93. Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J., Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474 (1997). https://doi.org/10.1038/386474a0

    Article  CAS  Google Scholar 

  94. Taveira, L.V., Macak, J.M., Tsuchiya, H., Dick, L.F.P., Schmuki, P.: Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F ∕(NH4)2SO4 electrolytes. J. Electrochem. Soc. 152, B405–B410 (2005). https://doi.org/10.1149/1.2008980

    Article  CAS  Google Scholar 

  95. Tegos, G.P., Demidova, T.N., Arcila-Lopez, D., Lee, H., Wharton, T., Gali, H., Hamblin, M.R.: Cationic fullerenes are effective and selective antimicrobal photosensitizers. Chem. Biol. 12, 1127–1135 (2005)

    Article  CAS  Google Scholar 

  96. Tian, M., Wang, J., Ning, W., Mallouk, T.E., Chan, M.H.W.: Surface superconductivity in thin cylindrical Bi nanowire. Nano Lett. 15, 1487–1492 (2015). https://doi.org/10.1021/nl503398d

    Article  CAS  Google Scholar 

  97. Tiwari, J.N., Tiwari, R.N., Kim, K.S.: Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced energy devices. Prog. Mater Sci. 67, 724–803 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.003

    Article  CAS  Google Scholar 

  98. van Treeck, D., Calabrese, G., Goertz, J.J.W., Kaganer, V.M., Brandt, O., Fernández-Garrido, S., Geelhaar, L.: Self-assembled formation of long, thin, and uncoalesced GaN nanowires on crystalline TiN films. Nano Res. 11, 565–576 (2018). https://doi.org/10.1007/s12274-017-1717-x

    Article  Google Scholar 

  99. van Gough, D., Juhl, A.T., Braun, P.V.: Programming structure into 3D nanomaterials. Mater. Today 12, 28–35 (2009). https://doi.org/10.1016/S1369-7021(09)70178-6

    Article  CAS  Google Scholar 

  100. Wang, Q., Huang, J., Li, H., Zhao, A.Z., Wang, Y., Zhang, K., Sun, H., Lai, Y.: Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. Int. J. Nanomed. 12, 151–165 (2017). https://doi.org/10.2147/IJN.S117498

    Article  CAS  Google Scholar 

  101. Wang, R., Tao, J., Yu, B., Dai, L.: Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. J. Prosthet. Dent. 111, 318–326 (2014). https://doi.org/10.1016/j.prosdent.2013.07.017A

    Article  CAS  Google Scholar 

  102. Xiong, G., He, P., Lyu, Z., Chen, T., Huang, B., Chen, L., Fisher, T.S.: Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat. Commun. 9, 790 (2018). https://doi.org/10.1038/s41467-018-03112-3

    Article  CAS  Google Scholar 

  103. Yan, J., Zhou, F.: TiO2 nanotubes: Structure optimization for solar cells. J. Mater. Chem. 21, 9406–9418 (2011). https://doi.org/10.1039/C1JM10274E

    Article  CAS  Google Scholar 

  104. Yao, K., Zhao, C., Sun, N., Lu, W., Zhang, Y., Wang, H., Wang, J.: Freestanding CuS nanowalls: ionic liquid-assisted synthesis and prominent catalytic performance for the decomposition of ammonium perchlorate. Cryst. Eng. Commun. 19, 5048–5057 (2017). https://doi.org/10.1039/C7CE01119A

    Article  CAS  Google Scholar 

  105. Yi, S., Sun, L., Lenaghan, S.C., Wang, Y., Chong, X., Zhang, Z., Zhang, M.: One-step synthesis of dendritic gold nanoflowers with high surface-enhanced Raman scattering (SERS) properties. RSC Adv. 3, 10139–10144 (2013). https://doi.org/10.1039/C3RA40716K

    Article  CAS  Google Scholar 

  106. Yin, W.-J., Gong, X.-G., Wei, S.-H.: Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x alloys. Phys. Rev. B 78, 161203 (2008). https://doi.org/10.1103/PhysRevB.78.161203

    Article  CAS  Google Scholar 

  107. Yu, X., Yu, X., Zhang, J., Chen, L., Long, Y., Zhang, D.: Optical properties of conductive silver-nanowire films with different nanowire lengths. Nano Res. 10, 3706–3714 (2017). https://doi.org/10.1007/s12274-017-1583-6

    Article  CAS  Google Scholar 

  108. Yun, J., Lee, M., Jeon, Y., Kim, M., Kim, Y., Lim, D., Kim, S.: Nanowatt power operation of silicon nanowire NAND logic gates on bendable substrates. Nano Res. 9, 3656–3662 (2016). https://doi.org/10.1007/s12274-016-1235-2

    Article  CAS  Google Scholar 

  109. Zhai, H., Li, Y., Chen, L., Wang, X., Shi, L., Wang, R., Sun, J.: Semi-transparent polymer solar cells with all-copper nanowire electrodes. Nano Res. 11, 1956–1966 (2018). https://doi.org/10.1007/s12274-017-1812-z

    Article  CAS  Google Scholar 

  110. Zhang, K., Cai, Y., Yao, C., Wen, X., Han, Y., Yin, H., Sun, W., Li, Q.: Structures, growth mechanism and optical properties of Ag-ZnO cored nanotubes. Mater. Lett. 234, 191–195 (2019). https://doi.org/10.1016/j.matlet.2018.09.100

    Article  CAS  Google Scholar 

  111. Zhang, K., Feng, Y., Wang, F., Yang, Z., Wang, J.: Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5, 11992–12022 (2017). https://doi.org/10.1039/C7TC04300G

    Article  CAS  Google Scholar 

  112. Zhang, X., Liu, Y., Kang, Z.: 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 6, 4480–4489 (2014). https://doi.org/10.1021/am500234v

    Article  CAS  Google Scholar 

  113. Zhang, Y., Liu, M., Ren, W., Ye, Z.: Well-ordered ZnO nanotube arrays and networks grown by atomic layer deposition. Appl. Surf. Sci. 340, 120–125 (2015). https://doi.org/10.1016/j.apsusc.2015.02.176

    Article  CAS  Google Scholar 

  114. Zhang, C., Zheng, C., Zhou, S., Shen, Y., Zuo, C.: Enhanced electrochromic porous cobalt oxides nanowall electrodes: a new way for fast modulation of yellow-brown light. Mater. Res. Bull. 89, 204–209 (2017). https://doi.org/10.1016/j.materresbull.2017.01.037

    Article  CAS  Google Scholar 

  115. Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009). https://doi.org/10.1039/B813846J

    Article  CAS  Google Scholar 

  116. Zhao, W., Du, N., Xiao, C., Wu, H., Zhang, H., Yang, D.: Large-scale synthesis of Ag–Si core–shell nanowall arrays as high-performance anode materials of Li-ion batteries. J. Mater. Chem. A. 2, 13949–13954 (2014). https://doi.org/10.1039/C4TA03238A

    Article  CAS  Google Scholar 

  117. Zhao, F., Zheng, J.G., Yang, X., Li, X., Wang, J., Zhao, F., Wong, K.S., Liang, C., Wu, M.: Complex ZnO nanotree arrays with tunable top, stem and branch structures. Nanoscale 2, 1674–1683 (2010). https://doi.org/10.1039/C0NR00076K

    Article  CAS  Google Scholar 

  118. Zhou, M., (David) Lou, X.W., Xie, Y.: Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities. Nano Today 8, 598–618 (2013). https://doi.org/10.1016/j.nantod.2013.12.002

    Article  CAS  Google Scholar 

  119. Zhu, J., Sharma, Y.K., Zeng, Z., Zhang, X., Srinivasan, M., Mhaisalkar, S., Zhang, H., Hng, H.H., Yan, Q.: Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J. Phys. Chem. C 115, 8400–8406 (2011). https://doi.org/10.1021/jp2002113

    Article  CAS  Google Scholar 

  120. Zulhairum, A.K., Abdullah, M.S., Ismail, A.F., Goh, P.S.: Graphene and CNT technology. In: Current Trends and Future Developments on (Bio-)Membranes, pp. 3–26 (2019). https://doi.org/10.1016/B978-0-12-813551-8.00001-2

    Chapter  Google Scholar 

  121. http://www.software3d.com/Stella.php, Distributed under GNU General Public License, Created using Stella Software; https://statnano.com/news/65056. Accessed 07 May 2019

  122. https://www.alliedmarketresearch.com/quantum-dots-market. Accessed 07 May 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Siuzdak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siuzdak, K., Haryński, Ł., Wawrzyniak, J., Kupracz, P., Grochowska, K. (2020). Self-standing Nanoarchitectures. In: Inamuddin, Boddula, R., Asiri, A. (eds) Self-standing Substrates. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29522-6_1

Download citation

Publish with us

Policies and ethics