Skip to main content

Infrared Spectral Functional Group and Thermal Properties of Acacia Wood Bio-composites

  • Chapter
  • First Online:
Acacia Wood Bio-composites

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter discover spectral functional group and thermal properties of acacia wood bio-composites. A small peak at 2897.08 cm−1 for U-AW fiber and 2900.94 cm−1 for M-AW fiber was attributed to the C-H stretching and O-H stretching bond structure that contained functional group of alkanes (cellulose and lignin) and carboxylic acids. The small peak in the region of the C-H stretching bond structure can also include a functional group of methyl (CH3), methylene (CH2), and aliphatic saturated (CH). The peak at 607.58 cm−1 and 592.15 cm−1 for U-AW fiber, and 605.65 cm−1, 559.36 cm−1, 493.78 cm−1 and 472.56 cm−1 for M-AW fiber is characterized as the =CH bending bond structure from the functional group of alkenes (lignin). Few additional peaks in M-AW fiber spectrum were due to the esterification, which promotes additional free hydroxyl structure, which improves the AW fiber structure for better adhesion with polymer. The peak at 943.19 cm−1 and 727.16 cm−1 for PLA/PHA, and 875.68 cm−1 and 719.45 cm−1 for NCHB-PLA/PHA is characterized as the C-H “oop” bond structure from the functional group of aromatics. The peak at 480.28 cm−1 for NCHB-PLA/PHA is characterized as the =CH bending bond structure from the functional group of alkenes. The DSC result prove that the reduction in the crystallinity values was an indicator of improvement in the adhesion between fiber and polymer in the bio-composites. The TGA result demonstrated that M-AW-PLA/PHA blend showed two degradation steps. The first step was due to decomposition of hemicellulose, and lignin, weak PHA and PLA bonding and the second step was degradation of cellulose, strong PLA and PHA and other bonding in the polymer blend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbelaiz, A., Fernandez, B., Ramos, J., & Mondragon, I. (2006). Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: Effect of treatments. Thermochimica Acta, 440(2), 111–121.

    Article  CAS  Google Scholar 

  • Armemtano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., et al. (2015). Processing and characterization of plasticized PLA/PHA blends for biodegradable multiphase system. eXPRESS Polymer Letters, 9(7), 583–596.

    Article  CAS  Google Scholar 

  • Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2015). Development of flexible materials based on plasticized electrospun PLA-PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 73(1), 433–446.

    Article  CAS  Google Scholar 

  • Arrieta, M. P., Samper, M. D., Aldas, M., & Lopez, J. (2017). On the use of PLA-PHB blends for sustainable food packaging applications. Materials, 10(9), 1–26.

    Article  Google Scholar 

  • Asha, A. B., Sharif, A., & Hoque, E. H. (2017). Interface interaction of jute fiber reinforced PLA biocomposites for potential applicaitions. In M. Jawaid, M. Salit, & O. Alothman (Eds.), Green biocomopsites. Cham: Green Energy and Technology, Springer.

    Google Scholar 

  • ASTM E1131-08. (2014). Standard test method for compositional analysis by thermogravimetry. ASTM International, West Conshohocken, PA.

    Google Scholar 

  • ASTM E1252-98. (2013). Standard practice for general techniques for obtaining infrared spectra for qualitative analysis. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM E1269-11. (2011). Standard test method for determining specific heat capacity by differential scanning calorimetry. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM E1868-10. (2015). Standard test methods for loss-on-drying by thermogarivmetry. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM E41-92. (2010). Terminology relating to conditioning. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D150-11. (2011). Standard test methods for AC loss characteristics and permittivity (Dielectric Constant) of solid electrical insulation. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D4812-11. (2011). Standard test method for unnotched cantilever beam impact resistance of plastics. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D6400-12. (2012). Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D638-14. (2014). Standard test method for tensile properties of plastics. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D3418-15. (2015). Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM International, West Conshohocken, PA.

    Google Scholar 

  • ASTM D6866-16. (2016). Standard test methods for determining the biobased content of solid, liquid, and gaseous samples using radiocarbon analysis. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM E168-16. (2016). Standard practices for general techniques of infrared quantitative analysis. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D790-17. (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • Ball, R., McIntosh, A., & Brindley, J. (2004). Feedback processes in cellulose thermal decomopsition: Implications for fire-retarding strategies and treatments. Combustion Theory and Modelling, 8(2), 281–291.

    Google Scholar 

  • Bessell, T. J., Hull, D., & Shortall, J. B. (1975). The effect of polymerization conditions and crystallinity on the mechanical properties and fracture of spherulitic nylon 6. Journal of Materials Science, 10(7), 1127–1136.

    Article  CAS  Google Scholar 

  • Bozkurt, E., Kaya, E., & Tanoglu, M. (2007). Mechanical and thermal behaviour of non-crimp glass fiber reinforced layered clay/epoxy nanocomposites. Composites Science and Technology, 67(15–16), 3394–3403.

    Article  CAS  Google Scholar 

  • Brebu, M., & Vasile, C. (2010). Thermal degradation of lignin—A review. Cellulose Chemistry and Technology, 44(9), 353–363.

    CAS  Google Scholar 

  • Centikol, O. P., Smith-Moritz, A. M., Cheng, G., Lao, J., George, A., Hong, K., et al. (2012). Structural chemical characterization of hardwood from tree species with applications as bioenergy feedstocks. PlosOne, 7(12), e52820.

    Article  Google Scholar 

  • Chen, H., Ferrari, C., Angiuli, M., Yao, J., Raspi, C., & Bramanti, E. (2010). Qualitative and quantitative analysis of wood samples by fourier transform infrared spectroscopy and multivariate analysis. Carbohydrate Polymers, 82(2), 772–778.

    Article  CAS  Google Scholar 

  • Dagnon, K. L., Chen, H. H., Innocentini-Mei, L., & D’Souza, N. A. (2009). Poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] layered double hydroxide nanocomposites. Polymer International, 58(2), 133–141.

    Article  CAS  Google Scholar 

  • De Paiva, J. M. F., & Frollini, E. (2006). Unmodified and modified surface sisal fibers as reinforcement of phenolic and lignophenolic matrices composites: Thermal analyses of fibers and composites. Macromolecular Materials and Engineering, 291(4), 405–417.

    Article  Google Scholar 

  • Dwivedi, B. K., & Mehta, B. K. (2011). Chemical investigation of aliphatic compounds of Piper betle (Leaf Stalk). Journal of Natural Product and Plant Resource, 1(2), 18–24.

    CAS  Google Scholar 

  • Ero-Phillips, O., Jenkins, M., & Stamboulis, A. (2012). Tailoring crystallinity of electrospun plla fibres by control of electrospinning parameters. Polymers, 4(3), 1331–1348.

    Article  CAS  Google Scholar 

  • Hergert, H. L. (1971). Infrared spectra. In K. V. Sarkanen & C. H. Ludwig (Eds.), Lignins: Occurrence, formation, structure and reactions (pp. 267–297). New York: Wiley.

    Google Scholar 

  • Hu, Y., Sato, H., Zhang, J., Noda, I., & Ozaki, Y. (2008). Crystallization behavior of Poly(L-lactic Acid) affected by the addition of small amount of Poly(3-hydroxybutyrate). Polymer, 49(19), 4204–4210.

    Article  CAS  Google Scholar 

  • Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites: Part B: Engineering, 43(7), 2883–2892.

    Google Scholar 

  • Khalil, A. S., Rahim, A. A., Taha, K. K., & Abdallah, K. B. (2013). Characterization of methanolic extracts of agarwood leaves. Journal of Applied and Industrial Science, 1(3), 78–88.

    CAS  Google Scholar 

  • Khan, F., & Ahmad, S. R. (1996). Chemical Modification and spectroscopic analysis of jute fiber. Polymer Degradation and Stability, 52(3), 335–340.

    Article  CAS  Google Scholar 

  • Kim, H. J., & Eom, Y. G. (2001). Thermogravimetric analysis of rice husk flour for a new raw material of lignocellulosic fiber-thermoplastic polymer composites. Journal of the Korean Wood Science and Technology, 29(3), 59–67.

    Google Scholar 

  • Kopinke, F. D., Remmler, M., Mackenzie, K., Möder, M., & Wachsen, O. (1996). Thermal decomposition of biodegradable polyesters-II. Poly(lactic acid). Polymer Degradation and Stability, 53(3), 329–342.

    Article  CAS  Google Scholar 

  • Kumar, S., Choudhary, V., & Kumar, R. (2010). Study on The compatibility of unbleached and bleached bamboo-fiber with LLDPE matrix. Journal of Thermal Analysis and Calorimetry, 102(2), 751–761.

    Article  CAS  Google Scholar 

  • Li, S., & Mc Carthy, S. (1999). Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s. Macromolecules, 32(13), 4454–4456.

    Article  CAS  Google Scholar 

  • Logan, A. F., & Balodis, V. (1982). Pulping and papermaking characteristics of plantation-grown Acacia mangium from Sabah. Malaysian Forester, 45(1), 217–236.

    Google Scholar 

  • Luz, S. M., Del Tio, J., Rocha, J., Gocalves, A. R., & Del’Arco Jr., A. P. (2008). Cellulose and Cellulignin from sugarcane bagasse reinforced polypropylene composites: Effect of acetylation on mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing, 39(9), 1362–1369.

    Google Scholar 

  • Mohanty, S., & Nayak, S. K. (2010). Short bamboo fiber-reinforced HDPE composites: Influence of fiber content and modification on strength of the composite. Journal of Reinforced Plastics and Composites, 29(14), 2199–2210.

    Article  CAS  Google Scholar 

  • Mohanty, S., Verma, S. K., & Nayak, S. K. (2006). Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Composites Science and Technology, 66(3–4), 538–547.

    Article  CAS  Google Scholar 

  • Morshed, M. M., Alam, M. M., & Deniels, S. M. (2012). Moisture removal of natural jute fiber by plasma drying process. Plasma Chemistry and Plasma Processing, 32(2), 249–258.

    Article  CAS  Google Scholar 

  • Nair, K. C. M., Thomas, S., & Groeninckx, G. (2001). Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Composites Science and Technology, 61(16), 2519–2529.

    Article  Google Scholar 

  • National Research Council. (1983). Magium and other fast growing acacias for the humid tropics. Washington DC: Natural Academic Press.

    Google Scholar 

  • Nguyen, T., Zavarin, E., & Barrall, E. M. (1981). Thermal analysis of lignocellulosic materials: Part I. Unmodified materials. Journal of Macromolecular Science, Part C: Polymer Reviews, 20(1), 1–65.

    Article  Google Scholar 

  • Owen, N. L., & Thomas, D. W. (1989). Infrared studies of “hard” and “soft” woods. Applied Spectroscopy, 43(3), 451–455.

    Article  CAS  Google Scholar 

  • Pandey, K. K. (1999). A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science, 71(12), 1969–1975.

    Article  CAS  Google Scholar 

  • Pashaei, S., Avval, M. M., & Syed, A. A. (2011). Thermal degradation kinetics of Nylon6/GF/Crysnano nanoclay nanocomposites by TGA. Chemical Industry and Chemical Engineering Quaterly/CICEQ, 17(2), 141–151.

    Article  CAS  Google Scholar 

  • Peh, T. B., & Khoo, K. C. (1984). Timber properties of Acacia mangium, Gmelina arborea, and Paraserianthes falcataria and their utilization aspects. Malaysian Forester, 47(1), 285–303.

    Google Scholar 

  • Peh, T. B., Khoo, K. C., & Lee, T. W. (1982). Sulphate pulping of Acacia mangium and Cleistopholis glauca from Sabah. Malaysian Forester, 45(1), 404–418.

    Google Scholar 

  • Pickering, K. L., Aruan Efendy, M. G., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A Applied Science and Manufacturing, 83(1), 98–112.

    Article  CAS  Google Scholar 

  • Raghavendra, G., Ojha, S., Acharya, S. K., & Pal, S. K. (2014). Jute fiber reinforced epoxy composites and comparison with the glass and neat epoxy composites. Journal of Composite Materials, 48(20), 2537–2547.

    Article  Google Scholar 

  • Ramadevi, P., Sampathkumar, D., Srivasa, C. V., & Bennehalli, B. (2012). Effect of Alkali treatment on water absorption of single cellulosic abaca fiber. BioResources, 7(3), 3515–3524.

    Google Scholar 

  • Randriamanantera, T., Razafindramisa, F. L., Ramanantsizehena, G., Bernes, A., & Lacabane, C. (2009). Thermal behaviour of three woods of Madagascar by thermogravimetric analysis in inert atmosphere. In Proceedings of the Fourth High-Energy Physics International Conference Antananarivo, Madagascar, pp. 1–10.

    Google Scholar 

  • Razali, A. K., & Kuo, H. S. (1983). Properties of particleboard manufactured from fast growing plantation species. Proceedings of Symposium on Recent Development in Tree Plantations of Humid/Subhumid Tropics of Asia, 1(1), 685–691.

    Google Scholar 

  • Saha, P., Manna, S., Chowdhury, S. R., Sen, R., Roy, D., & Adhikari, B. (2010). Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam tretment. Bioresource Technology, 101(9), 3182–3187.

    Article  CAS  Google Scholar 

  • Sinha, E., & Rout, S. K. (2008). Influence of fiber-surface treatment on structural, thermal, and mechanical properties of jute. Journal of Materials Science, 43(8), 2590–2601.

    Article  CAS  Google Scholar 

  • Sining, U. (1989). Some Wood Properties of Acacia mangium Willd. from Three Provenances Grown in Sabah”. Thesis, Universiti Pertanian Malaysia.

    Google Scholar 

  • Siyamak, S., Ibrahim, N. A., Abdolmohammadi, S., Wan Yunus, W. M. Z., & Rahman, M. Z. A. B. (2012). Effect of fiber esterification on fundamental properties of oil palm empty fruit bunch fiber/Poly(butylene adipate-co-terephtalate) biocomposites. International Journal of Molecular Sciences, 13(2), 1327–1346.

    Article  CAS  Google Scholar 

  • Smith, B. C. (1998). Infrared spectral interpretation: A systematic approach. CRC Press Taylor and Francis Group.

    Google Scholar 

  • Stuart, B. (2004). Infrared spectroscopy: Fundamentals and applications. Wiley Ltd.

    Google Scholar 

  • Tajvidi, M., & Takemura, A. (2009). Thermal degradation of natural fiber-reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 23(12), 1373–1382.

    Google Scholar 

  • Wagner, A., Poursorkhabi, V., Mohanty, A. K., & Misra, M. (2014). Analysis of porous electrospun fibers from Poly(L-lactic acid)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. ACS Sustainable Chemistry and Engineering, 2(8), 1976–1982.

    Article  CAS  Google Scholar 

  • Wang, Q., Sasaki, H., & Razali, A. K. (1989). Properties of fast growing timbers from plantation thinning in Sabah. Wood Research and Technical Note, 25(1), 45–51.

    Google Scholar 

  • Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advance Polymer Technology, 30(2), 67–79.

    Google Scholar 

Download references

Acknowledgements

The authors would like to Universiti Malaysia Sarawak and Swinburne University of Technology Sarawak Campus for the collaboration efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Rezaur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakri, M.K.B., Rahman, M.R., Hamdan, S., Nyuk Khui, P.L., Jayamani, E., Kakar, A. (2019). Infrared Spectral Functional Group and Thermal Properties of Acacia Wood Bio-composites. In: Rahman, M. (eds) Acacia Wood Bio-composites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29627-8_6

Download citation

Publish with us

Policies and ethics