Skip to main content

A Global Synthesis of Throughfall and Stemflow Hydrometeorology

  • Chapter
  • First Online:
Precipitation Partitioning by Vegetation

Abstract

The amount and patterning of precipitation beneath vegetation is determined by throughfall and stemflow. Throughfall is the portion of precipitation that falls through, or drips from, the canopy; whereas, stemflow is the portion that drains down the stem. This chapter briefly synthesises throughfall and stemflow methods, data and major drivers of variability from all studies returned from Web of Science that reported relative annual or seasonal throughfall and stemflow (% of precipitation across the canopy) to date: 644 observations spanning broad climate (boreal, temperate, Mediterranean, subtropical and tropical) and plant types (forests, shrublands, croplands and grasslands) around the globe. Relative throughfall was greatest for forests followed by shrubs > crops > grasses; whereas, relative stemflow was greatest for grasses followed by crops > shrubs > forests. This synthesis identified challenges to integrating net precipitation into large-scale (regional-to-global) hydrologic and climate processes and estimates, including: (1) under-sampling at sites; (2) lacking data for solid and mixed precipitation events’ throughfall and stemflow; (3) very few throughfall and stemflow observations for herbaceous vegetation (compared to woody plants) despite croplands and grasslands representing 11% and 27% of the land surface, respectively, as well as understory herbaceous vegetation being present in nearly all forests; and (4) the current focus on fine-scale drivers of highly localized patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboal J, Morales D, Hernández M, Jiménez M (1999) The measurement and modelling of the variation of stemflow in a laurel forest in Tenerife, Canary Islands. J Hydrol 221(3–4):161–175

    Article  Google Scholar 

  • Aboal JR, Saavedra S, Hernández-Moreno JM (2015) Edaphic heterogeneity related to below-canopy water and solute fluxes in a Canarian laurel forest. Plant Soil 387(1–2):177–188

    Article  Google Scholar 

  • Abrahamsen G, Horntvedt R, Tveite B (1977) Impacts of acid precipitation on coniferous forest ecosystems. Water Air Soil Pollut 8(1):57–73

    Google Scholar 

  • Ahmadi MT, Attarod P, Mohadjer MRM, Rahmani R, Fathi J (2009) Partitioning rainfall into throughfall, stemflow, and interception loss in an oriental beech (Fagus orientalis Lipsky) forest during the growing season. Turk J Agric For 33(6):557–568

    Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper FAO, Rome

    Google Scholar 

  • Aussenac G (1968) Interception des précipitations par le couvert forestier. Ann Sci Forest 25(3):135–156. https://doi.org/10.1051/forest/19680302

    Article  Google Scholar 

  • Badri W, Gauquelin T (1998) The hydrological cycle and changes of soil water storage in a thuriferous juniper (Juniperus thurifera L.) stand in the Moroccan High Atlas Mountains. In: Chalise S, Hermann A, Khanal N, Lang H, Molnar L, Pokhrel A (eds) Conference on ecohydrology of high mountain areas, Kathmandu, Nepal, pp 315–321

    Google Scholar 

  • Bales RC, Hopmans JW, O’Geen AT, Meadows M, Hartsough PC, Kirchner P, Hunsaker CT, Beaudette D (2011) Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest. Vadose Zone J 10(3):786–799

    Article  Google Scholar 

  • Beard J (1962) Rainfall interception by grass. S Afr For J 42(1):12–15

    Google Scholar 

  • Bellot J, Escarre A (1998) Stemflow and throughfall determination in a resprouted Mediterranean holm-oak forest. In: Annales des sciences forestières, vol 7. EDP Sciences, pp 847–865

    Google Scholar 

  • Bergkvist B, Folkeson L (1995) The influence of tree species on acid deposition, proton budgets and element fluxes in south Swedish forest ecosystems. Ecol Bullet:90–99

    Google Scholar 

  • Bialkowski R, Buttle JM (2015) Stemflow and throughfall contributions to soil water recharge under trees with differing branch architectures. Hydrol Process 29(18):4068–4082. https://doi.org/10.1002/hyp.10463

    Article  Google Scholar 

  • Bornmann L, Mutz R (2015) Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. J Assoc Inf Sci Technol 66(11):2215–2222

    Article  Google Scholar 

  • Brauman KA, Freyberg DL, Daily GC (2010) Forest structure influences on rainfall partitioning and cloud interception: a comparison of native forest sites in Kona, Hawai’i. Agric For Meteorol 150(2):265–275. https://doi.org/10.1016/j.agrformet.2009.11.011

    Article  Google Scholar 

  • Bruijnzeel L, Mulligan M, Scatena FN (2011) Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol Process 25(3):465–498

    Article  Google Scholar 

  • Bryant ML, Bhat S, Jacobs JM (2005) Measurements and modeling of throughfall variability for five forest communities in the southeastern US. J Hydrol 312(1–4):95–108. https://doi.org/10.1016/j.jhydrol.2005.02.012

    Article  Google Scholar 

  • Bui EN, Box JE (1992) Stemflow, rain throughfall, and erosion under canopies of corn and sorghum. Soil Sci Soc Am J 56(1):242–247

    Article  Google Scholar 

  • Butler D, Huband N (1985) Throughfall and stem-flow in wheat. Agric For Meteorol 35(1–4):329–338

    Article  Google Scholar 

  • Calder IR (1990) Evaporation in the Uplands. Wiley

    Google Scholar 

  • Cantú Silva I, González Rodríguez H (2001) Interception loss, throughfall and stemflow chemistry in pine and oak forests in northeastern Mexico. Tree Physiol 21(12–13):1009–1013

    Article  Google Scholar 

  • Cape J, Brown A, Robertson S, Howson G, Paterson I (1991) Interspecies comparisons of throughfall and stemflow at three sites in northern Britain. For Ecol Manage 46(3–4):165–177

    Article  Google Scholar 

  • Cappellato R, Peters NE (1995) Dry deposition and canopy leaching rates in deciduous and coniferous forests of the Georgia Piedmont: an assessment of a regression model. J Hydrol 169(1–4):131–150

    Google Scholar 

  • Carlyle-Moses D, Laureano JF, Price A (2004) Throughfall and throughfall spatial variability in Madrean oak forest communities of northeastern Mexico. J Hydrol 297(1–4):124–135

    Article  Google Scholar 

  • Carlyle-Moses DE (2004) Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community. J Arid Environ 58(2):181–202. https://doi.org/10.1016/s0140-1963(03)00125-3

    Article  Google Scholar 

  • Carlyle-Moses DE, Si Iida, Germer S, Llorens P, Michalzik B, Nanko K, Tischer A, Levia DF (2018) Expressing stemflow commensurate with its ecohydrological importance. Adv Water Resour 121:472–479

    Article  Google Scholar 

  • Chang SC, Matzner E (2000) The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand. Hydrol Process 14(1):135–144

    Article  Google Scholar 

  • Courchesne F, Hendershot W (1988) Cycle annuel des éléments nutritifs dans un bassin-versant forestier: contribution de la litière fraîche. Can J For Res 18(7):930–936

    Article  Google Scholar 

  • Crockford R, Richardson D (2000) Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol Process 14(16–17):2903–2920

    Article  Google Scholar 

  • Davies-Barnard T, Valdes P, Jones C, Singarayer J (2014) Sensitivity of a coupled climate model to canopy interception capacity. Clim Dyn 42(7–8):1715–1732

    Article  Google Scholar 

  • Dawson TE (1998) Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117(4):476–485

    Article  Google Scholar 

  • De Ploey J (1982) A stemflow equation for grasses and similar vegetation. CATENA 9(1–2):139–152

    Article  Google Scholar 

  • De Schrijver A, Geudens G, Augusto L, Staelens J, Mertens J, Wuyts K, Gielis L, Verheyen K (2007) The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153(3):663–674

    Article  Google Scholar 

  • Dolman A (1987) Summer and winter rainfall interception in an oak forest. Predictions with an analytical and a numerical simulation model. J Hydrol 90(1–2):1–9

    Google Scholar 

  • Dunkerley D (2014a) Stemflow on the woody parts of plants: dependence on rainfall intensity and event profile from laboratory simulations. Hydrol Process 28(22):5469–5482. https://doi.org/10.1002/hyp.10050

    Article  Google Scholar 

  • Dunkerley D (2014b) Stemflow production and intrastorm rainfall intensity variation: an experimental analysis using laboratory rainfall simulation. Earth Surf Proc Land 39(13):1741–1752. https://doi.org/10.1002/esp.3555

    Article  Google Scholar 

  • Ford E, Deans J (1978) The effects of canopy structure on stemflow, throughfall and interception loss in a young Sitka spruce plantation. J Appl Ecol:905–917

    Google Scholar 

  • Foster NW (1974) Annual macroelement transfer from Pinus banksiana Lamb. forest to soil. Can J For Res 4(4):470–476

    Google Scholar 

  • Frangi JL, Lugo AE (1985) Ecosystem dynamics of a subtropical floodplain forest. Ecol Monogr 55(3):351–369

    Article  Google Scholar 

  • Freedman B, Prager U (1986) Ambient bulk deposition, throughfall, and stemflow in a variety of forest stands in Nova Scotia. Can J For Res 16(4):854–860

    Article  Google Scholar 

  • Friesen J, Bawain A, de Jong S, Hildebrandt A (2010) Acoustic throughfall measurements in a semiarid cloud forest, Dhofar, Oman: first results. In: AGU fall meeting abstract

    Google Scholar 

  • Friesen J, Köhler A (2014) Analysis of splash loss for different throughfall trough designs. In: EGU general assembly conference abstracts

    Google Scholar 

  • Friesen J, Lundquist J, Van Stan JT (2015) Evolution of forest precipitation water storage measurement methods. Hydrol Process 29(11):2504–2520. https://doi.org/10.1002/hyp.10376

    Article  Google Scholar 

  • Frost EE, Levia DF (2014) Hydrologic variation of stemflow yield across co-occurring dominant canopy trees of varying mortality. Ecohydrology 7(2):760–770. https://doi.org/10.1002/eco.1397

    Article  Google Scholar 

  • Garcia-Estringana P, Alonso-Blázquez N, Alegre J (2010) Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J Hydrol 389(3–4):363–372

    Article  Google Scholar 

  • García-Santos G, Bruijnzeel L (2011) Rainfall, fog and throughfall dynamics in a subtropical ridge top cloud forest, National Park of Garajonay (La Gomera, Canary Islands, Spain). Hydrol Process 25(3):411–417

    Article  Google Scholar 

  • Germer S, Werther L, Elsenbeer H (2010) Have we underestimated stemflow? Lessons from an open tropical rainforest. J Hydrol 395(3–4):169–179. https://doi.org/10.1016/j.jhydrol.2010.10.022

    Article  Google Scholar 

  • Gerrits AMJ, Pfister L, Savenije HHG (2010) Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol Process 24(21):3011–3025. https://doi.org/10.1002/hyp.7712

    Article  Google Scholar 

  • Ghorbani S, Rahmani R (2009) Estimating of interception loss, stemflow and throughfall in a natural stand of oriental Beech (Shastkalateh forest)

    Google Scholar 

  • Gill D (1975) Influence of white spruce trees on permafrost-table microtopography, Mackenzie River Delta. Can J Earth Sci 12(2):263–272

    Article  Google Scholar 

  • Godoy R, Oyarzún C, Bahamondes J (1999) Flujos hidroquímicos en un bosque de Nothofagus pumilio en el Parque Nacional Puyehue, sur de Chile. Revista Chilena de Historia Natural 72:579–594

    Google Scholar 

  • Godoy R, Oyarzún C, Gerding V (2001) Precipitation chemistry in deciduous and evergreen Nothofagus forests of southern Chile under a low-deposition climate. Basic Appl Ecol 2(1):65–72. https://doi.org/10.1078/1439-1791-00037

    Article  Google Scholar 

  • González-Martínez TM, Williams-Linera G, Holwerda F (2017) Understory and small trees contribute importantly to stemflow of a lower montane cloud forest. Hydrol Process 31(5):1174–1183. https://doi.org/10.1002/hyp.11114

    Article  Google Scholar 

  • Gordon D, Coenders-Gerrits A, Van Stan Ii JT (2018) Net rainfall partitioning by herbaceous plants in a Pinus palustris understory. In: American Geophysical Union Fall Meeting, Washington, D.C

    Google Scholar 

  • Guswa AJ, Spence CM (2012) Effect of throughfall variability on recharge: application to hemlock and deciduous forests in western Massachusetts. Ecohydrology 5(5):563–574. https://doi.org/10.1002/eco.281

    Article  Google Scholar 

  • Hakimi L, Sadeghi SMM, Van Stan JT, Pypker TG, Khosropour E (2018) Management of pomegranate (Punica granatum) orchards alters the supply and pathway of rain water reaching soils in an arid agricultural landscape. Agr Ecosyst Environ 259:77–85

    Article  Google Scholar 

  • Hallett J, Mason BJ (1958) The influence of temperature and supersaturation on the habit of ice crystals grown from the vapour. Proc R Soc Lond A 247(1251):440–453

    Article  Google Scholar 

  • Hamdan K, Schmidt M (2012) The influence of bigleaf maple on chemical properties of throughfall, stemflow, and forest floor in coniferous forest in the Pacific Northwest. Can J For Res 42(5):868–878

    Article  Google Scholar 

  • Harzing A-W, Alakangas S (2016) Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics 106(2):787–804

    Article  Google Scholar 

  • Heartsill-Scalley T, Scatena FN, Estrada C, McDowell WH, Lugo AE (2007) Disturbance and long-term patterns of rainfall and throughfall nutrient fluxes in a subtropical wet forest in Puerto Rico. J Hydrol 333(2–4):472–485. https://doi.org/10.1016/j.jhydrol.2006.09.019

    Article  Google Scholar 

  • Hedstrom N, Pomeroy J (1998) Measurements and modelling of snow interception in the boreal forest. Hydrol Process 12(10–11):1611–1625

    Article  Google Scholar 

  • Herwitz SR (1985) Interception storage capacities of tropical rainforest canopy trees. J Hydrol 77(1–4):237–252

    Article  Google Scholar 

  • Herwitz SR (1986) Infiltration-excess caused by stemflow in a cyclone-prone tropical rainforest. Earth Surf Proc Land 11(4):401–412

    Article  Google Scholar 

  • Herwitz SR, Levia Jr DF (1997) Mid‐winter stemflow drainage from bigtooth aspen (Populus grandidentata Michx.) in central Massachusetts. Hydrol Process 11(2):169–175

    Google Scholar 

  • Hildebrandt A, Al Aufi M, Amerjeed M, Shammas M, Eltahir EA (2007) Ecohydrology of a seasonal cloud forest in Dhofar: 1. Field experiment. Water Resour Res 43(10)

    Google Scholar 

  • Hörmann G, Branding A, Clemen T, Herbst M, Hinrichs A, Thamm F (1996) Calculation and simulation of wind controlled canopy interception of a beech forest in Northern Germany. Agric For Meteorol 79(3):131–148

    Article  Google Scholar 

  • Huber A, Iroumé A, Bathurst J (2008) Effect of Pinus radiata plantations on water balance in Chile. Hydrol Process Int J 22(1):142–148

    Article  Google Scholar 

  • Ibrahim M, Rapp M, Lossaint P (1982) Economie de l’eau d’un écosystème à Pinus pinea L. du littoral méditerranéen. In: Annales des Sciences Forestières, vol 3. EDP Sciences, pp 289–306

    Google Scholar 

  • Iida SI, Shimizu T, Kabeya N, Nobuhiro T, Tamai K, Shimizu A, Ito E, Ohnuki Y, Abe T, Tsuboyama Y (2012) Calibration of tipping-bucket flow meters and rain gauges to measure gross rainfall, throughfall, and stemflow applied to data from a Japanese temperate coniferous forest and a Cambodian tropical deciduous forest. Hydrol Process 26(16):2445–2454

    Article  Google Scholar 

  • Ilek A, Kucza J, Morkisz K (2017) Hygroscopicity of the bark of selected forest tree species. iForest Biogeosci For 10(1):220–226. https://doi.org/10.3832/ifor1979-009

  • Jefferies R, MacKerron D (1985) Stemflow in potato crops. J Agric Sci 105(1):205–207

    Article  Google Scholar 

  • Johnson MS, Lehmann J (2006) Double-funneling of trees: stemflow and root-induced preferential flow. Ecoscience 13(3):324–333

    Article  Google Scholar 

  • Johnson R (1990) The interception, throughfall and stemflow in a forest in highland Scotland and the comparison with other upland forests in the UK. J Hydrol 118(1–4):281–287

    Article  Google Scholar 

  • Keim RF, Link TE (2018) Linked spatial variability of throughfall amount and intensity during rainfall in a coniferous forest. Agric For Meteorol 248:15–21. https://doi.org/10.1016/j.agrformet.2017.09.006

    Article  Google Scholar 

  • Keim RF, Skaugset AE (2004) A linear system model of dynamic throughfall rates beneath forest canopies. Water Resour Res 40(5). https://doi.org/10.1029/2003wr002875

  • Klamerus-Iwan A, Błońska E (2018) Canopy storage capacity and wettability of leaves and needles: the effect of water temperature changes. J Hydrol 559:534–540

    Article  Google Scholar 

  • Krämer I, Hölscher D (2009) Rainfall partitioning along a tree diversity gradient in a deciduous old-growth forest in Central Germany. Ecohydrology 2(1):102–114. https://doi.org/10.1002/eco.44

    Article  Google Scholar 

  • Krutzsch H (1863) Die zu forstlichen Zwecken eingerichteten meteorologischen Stationen sind die Resultate der Deobachtnngen im Jahre 1863. Tharandter forstliches Jahrbuch 16:216–226

    Google Scholar 

  • Lacombe G, Valentin C, Sounyafong P, De Rouw A, Soulileuth B, Silvera N, Pierret A, Sengtaheuanghoung O, Ribolzi O (2018) Linking crop structure, throughfall, soil surface conditions, runoff and soil detachment: 10 land uses analyzed in Northern Laos. Sci Total Environ 616:1330–1338

    Article  Google Scholar 

  • Law F (1957) Measurement of rainfall, interception and evaporation losses in a plantation of sitka spruce trees. In: Paper presented at the Compl. Rend. Assoc. Intern. Hydrologic Sci., Toronto, Canada

    Google Scholar 

  • Lawson ER (1967) Throughall and stemflow in a pine-hardwood stand in the Ouachita Mountains of Arkansas. Water Resour Res 3(3):731–735

    Article  Google Scholar 

  • Lazerjan MS (2012) Hydrochemistry of rainfall and stemflow of Juglans regia Linn and Cupressus sempervirens L. Var. Fastigiata in the North of Iran. Ecopersia 1(1):85–98

    Google Scholar 

  • Lei R, Shang L, Tang Z (1994a) The influence of human activities on hydrological functions of a Quercus aliena forest. Studies on forest ecosystems. Northeast Forestry University Press, Harbin, pp 235–244

    Google Scholar 

  • Lei R, Zhang Y, Dang K (1994b) A study on hydrological effects of forest in Qinling Mountains Forest Region. In: Zhou X (ed) Studies on forest ecosystems. Northeast Forest University Press, Harbin, pp 223–234

    Google Scholar 

  • Levia DF (2004) Differential winter stemflow generation under contrasting storm conditions in a southern New England broad-leaved deciduous forest. Hydrol Process 18(6):1105–1112. https://doi.org/10.1002/hyp.5512

    Article  Google Scholar 

  • Levia DF, Frost EE (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol 274(1–4):1–29

    Article  Google Scholar 

  • Levia DF, Frost EE (2006) Variability of throughfall volume and solute inputs in wooded ecosystems. Prog Phys Geogr 30(5):605–632. https://doi.org/10.1177/0309133306071145

    Article  Google Scholar 

  • Levia DF, Germer S (2015) A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Rev Geophys 53(3):673–714

    Article  Google Scholar 

  • Levia DF, Herwitz SR (2005) Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils. CATENA 64(1):117–137. https://doi.org/10.1016/j.catena.2005.08.001

    Article  Google Scholar 

  • Levia DF, Hudson SA, Llorens P, Nanko K (2017) Throughfall drop size distributions: a review and prospectus for future research. Wiley Interdisc Rev Water 4(4):e1225

    Article  Google Scholar 

  • Levia DF, Keim RF, Carlyle-Moses DE, Frost EE (2011) Throughfall and stemflow in wooded ecosystems. In: Forest hydrology and biogeochemistry. Springer, pp 425–443

    Google Scholar 

  • Levia DF, Michalzik B, Näthe K, Bischoff S, Richter S, Legates DR (2015) Differential stemflow yield from European beech saplings: the role of individual canopy structure metrics. Hydrol Process 29(1):43–51. https://doi.org/10.1002/hyp.10124

    Article  Google Scholar 

  • Levia DF, Underwood SJ (2004) Snowmelt induced stemflow in northern hardwood forests: a theoretical explanation on the causation of a neglected hydrological process. Adv Water Resour 27(2):121–128. https://doi.org/10.1016/j.advwatres.2003.12.001

    Article  Google Scholar 

  • Levia DF, Van Stan JT, Mage SM, Kelley-Hauske PW (2010) Temporal variability of stemflow volume in a beech-yellow poplar forest in relation to tree species and size. J Hydrol 380(1–2):112–120. https://doi.org/10.1016/j.jhydrol.2009.10.028

    Article  Google Scholar 

  • Levia DF Jr, Herwitz SR (2000) Physical properties of water in relation to stemflow leachate dynamics: implications for nutrient cycling. Can J For Res 30(4):662–666

    Article  Google Scholar 

  • Leyton L (1967) Rainfall interception in forest and moorland. In: International symposium on forest hydrology. Pergamon, pp 163–178

    Google Scholar 

  • Li J, Gilhooly WP, Okin GS, Blackwell J (2017) Abiotic processes are insufficient for fertile island development: A 10-year artificial shrub experiment in a desert grassland. Geophys Res Lett 44(5):2245–2253

    Article  Google Scholar 

  • Li X-Y, Yang Z-P, Li Y-T, Lin H (2009) Connecting ecohydrology and hydropedology in desert shrubs: stemflow as a source of preferential flow in soils. Hydrol Earth Syst Sci 13(7):1133–1144

    Article  Google Scholar 

  • Link TE, Unsworth M, Marks D (2004) The dynamics of rainfall interception by a seasonal temperate rainforest. Agric For Meteorol 124(3–4):171–191. https://doi.org/10.1016/j.agrformet.2004.01.010

    Article  Google Scholar 

  • Liu Y, Li X, Chen G, Li M, Liu M, Liu D (2015) Epidermal micromorphology and mesophyll structure of Populus euphratica heteromorphic leaves at different development stages. PLoS ONE 10(9):e0137701

    Article  Google Scholar 

  • Livesley SJ, Baudinette B, Glover D (2014) Rainfall interception and stem flow by eucalypt street trees: the impacts of canopy density and bark type. Urban For Urban Green 13(1):192–197. https://doi.org/10.1016/j.ufug.2013.09.001

    Article  Google Scholar 

  • Llorens P, Poch R, Latron J, Gallart F (1997) Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area I. Monitoring design and results down to the event scale. J Hydrol 199(3–4):331–345

    Google Scholar 

  • Loritz R, Gupta H, Jackisch C, Westhoff M, Kleidon A, Ehret U, Zehe E (2018) On the dynamic nature of hydrological similarity. Hydrol Earth Syst Sci 22(7):3663–3684

    Article  Google Scholar 

  • Lundberg A, Calder I, Harding R (1998) Evaporation of intercepted snow: measurement and modelling. J Hydrol 206(3–4):151–163

    Article  Google Scholar 

  • Lundberg A, Eriksson M, Halldin S, Kellner E, Seibert J (1997) New approach to the measurement of interception evaporation. J Atmos Oceanic Technol 14(5):1023–1035

    Article  Google Scholar 

  • Lundberg A, Halldin S (2001) Snow interception evaporation. Review of measurementtechniques, processes, and models. Theor Appl Climatol 70(1–4):117–133

    Google Scholar 

  • Ma L, Teng Y, Shangguan Z (2014) Ecohydrological responses to secondary natural Populus davidiana and plantation Pinus tabulaeformis woodlands on the Loess Plateau of China. Ecohydrology 7(2):612–621

    Article  Google Scholar 

  • Mahat V, Tarboton DG (2014) Representation of canopy snow interception, unloading and melt in a parsimonious snowmelt model. Hydrol Process 28(26):6320–6336

    Article  Google Scholar 

  • Mahendrappa M (1974) Chemical composition of stemflow from some eastern Canadian tree species. Can J For Res 4(1):1–7

    Article  Google Scholar 

  • Mahendrappa M (1990) Partitioning of rainwater and chemicals into throughfall and stemflow in different forest stands. For Ecol Manage 30(1–4):65–72

    Article  Google Scholar 

  • Majima M, Tase N (1982) Spatial variation of rainfall in a red pine forest. Bull Environ Res Cen Univ Tsukuba 6:75–82

    Google Scholar 

  • Malone M (2015) Hydrological and biogeochemical fluxes of throughfall and stemflow in temperate swamps

    Google Scholar 

  • Manfroi OJ, Kuraji K, Suzuki M, Tanaka N, Kume T, Nakagawa M, To Kumagai, Nakashizuka T (2006) Comparison of conventionally observed interception evaporation in a 100-m2 subplot with that estimated in a 4-ha area of the same Bornean lowland tropical forest. J Hydrol 329(1–2):329–349. https://doi.org/10.1016/j.jhydrol.2006.02.020

    Article  Google Scholar 

  • Martinez-Meza E, Whitford WG (1996) Stemflow, throughfall and channelization of stemflow by roots in three Chihuahuan desert shrubs. J Arid Environ 32(3):271–287

    Article  Google Scholar 

  • Masukata H, Ando M, Ogawa H (1990) Throughfall, stemflow and interception of rainwater in an evergreen broadleaved forest. Ecol Res 5(3):303–316

    Article  Google Scholar 

  • Mathers T, Taylor C (1983) Rainfall interception on a small forested watershed within the Kawartha Lakes region. Can Water Res J 8(1):120–129

    Article  Google Scholar 

  • McJannet D, Wallace J, Reddell P (2007) Precipitation interception in Australian tropical rainforests: I. Measurement of stemflow, throughfall and cloud interception. Hydrol Process Int J 21(13):1692–1702

    Google Scholar 

  • McKee AJ, Carlyle-Moses DE (2016) Modelling stemflow production by juvenile lodgepole pine (Pinus contorta var. latifolia) trees. J For Res 28(3):565–576. https://doi.org/10.1007/s11676-016-0336-9

  • Michalzik B (2011) Insects, infestations, and nutrient fluxes. In: Forest hydrology and biogeochemistry. Springer, pp 557–580

    Google Scholar 

  • Miller DH (1966) Transport of intercepted snow from trees during snow storms. Res Paper PSW-RP-033 Berkeley, Ca: US Department of Agriculture, Forest Service, Pacific Southwest Forest & Range Experiment Station 30, p 33

    Google Scholar 

  • Miralles D, De Jeu R, Gash J, Holmes T, Dolman A (2011) Magnitude and variability of land evaporation and its components at the global scale

    Google Scholar 

  • Mitchell PJ, Lane PN, Benyon RG (2012) Capturing within catchment variation in evapotranspiration from montane forests using LiDAR canopy profiles with measured and modelled fluxes of water. Ecohydrology 5(6):708–720

    Article  Google Scholar 

  • Molchanov AA (1963) The hydrological role of forests

    Google Scholar 

  • Molina AJ, del Campo AD (2012) The effects of experimental thinning on throughfall and stemflow: a contribution towards hydrology-oriented silviculture in Aleppo pine plantations. For Ecol Manage 269:206–213

    Article  Google Scholar 

  • Moore LD, Van Stan JT, Gay TE, Rosier C, Wu T (2016) Alteration of soil chitinolytic bacterial and ammonia oxidizing archaeal community diversity by rainwater redistribution in an epiphyte-laden Quercus virginiana canopy. Soil Biol Biochem 100:33–41. https://doi.org/10.1016/j.soilbio.2016.05.016

    Article  Google Scholar 

  • Moore TR (2003) Dissolved organic carbon in a northern boreal landscape. Glob Biogeochem Cycles 17(4). https://doi.org/10.1029/2003gb002050

  • Mosello R, Brizzio MC, Kotzias D, Marchetto A, Rembges D, Tartari G (2002) The chemistry of atmospheric deposition in Italy in the framework of the National Programme for Forest Ecosystems Control (CONECOFOR). J Limnol 61(1s):77. https://doi.org/10.4081/jlimnol.2002.s1.77

    Article  Google Scholar 

  • Mongeon P, Paul-Hus A (2016) The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics 106(1):213–228

    Article  Google Scholar 

  • Murray S, Watson I, Prentice I (2013) The use of dynamic global vegetation models for simulating hydrology and the potential integration of satellite observations. Prog Phys Geogr 37(1):63–97

    Article  Google Scholar 

  • Murray SJ (2014) Trends in 20th century global rainfall interception as simulated by a dynamic global vegetation model: implications for global water resources. Ecohydrology 7(1):102–114. https://doi.org/10.1002/eco.1325

    Article  Google Scholar 

  • Nanko K, Hotta N, Suzuki M (2006) Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. J Hydrol 329(3–4):422–431

    Article  Google Scholar 

  • Nasiri M, Zare N, Jalilvand H (2012) Investigation of the effective factors on rate of stemflow for tree species in Hyrcanian forests. Egypt J Biol 14(1):37–44

    Google Scholar 

  • Návar J (2017) Fitting rainfall interception models to forest ecosystems of Mexico. J Hydrol 548:458–470. https://doi.org/10.1016/j.jhydrol.2017.03.025

    Article  Google Scholar 

  • Neal C, Robson A, Bhardwaj C, Conway T, Jeffery H, Neal M, Ryland G, Smith C, Walls J (1993) Relationships between precipitation, stemflow and throughfall for a lowland beech plantation, Black Wood, Hampshire, southern England: findings on interception at a forest edge and the effects of storm damage. J Hydrol 146:221–233

    Article  Google Scholar 

  • Nezamdoost H, Sefidi K, Rasoulzadeh A, Sadeghi S (2018) Quantifying throughfall, stemflow, and rainfall interception in a Fagus orientalis forest and a Picea abies plantation in Siahkal, Gilan. Iran J For 9(3)

    Google Scholar 

  • Nieschulze J, Erasmi S, Dietz J, Hölscher D (2009) Satellite-based prediction of rainfall interception by tropical forest stands of a human-dominated landscape in Central Sulawesi, Indonesia. J Hydrol 364(3–4):227–235

    Article  Google Scholar 

  • Nihlgård B (1970) Precipitation, its chemical composition and effect on soil water in a beech and a spruce forest in south Sweden. Oikos:208–217

    Google Scholar 

  • Noirfalise A (1958) Sur l’interception de la pluie par le couvert dans quelques forêts belges. Bullet Soc For Belgium 66(10):433–439

    Google Scholar 

  • Onodera S-I, Van Stan JT (2011) Effect of forest fires on hydrology and biogeochemistry of watersheds. In: Forest hydrology and biogeochemistry. Springer, pp 599–621

    Google Scholar 

  • Oyarzún CE, Godoy R, De Schrijver A, Staelens J, Lust N (2004) Water chemistry and nutrient budgets in an undisturbed evergreen rainforest of southern Chile. Biogeochemistry 71(1):107–123

    Article  Google Scholar 

  • Page C (1976) The taxonomy and phytogeography of bracken—a review. Bot J Linn Soc 73(1–3):1–34

    Article  Google Scholar 

  • Paltineanu I, Starr J (2000) Preferential water flow through corn canopy and soil water dynamics across rows. Soil Sci Soc Am J 64(1):44–54

    Article  Google Scholar 

  • Peterson DL, Rolfe GL (1982) Precipitation components as nutrient pathways in floodplain and upland forests of central Illinois. For Sci 28(2):321–332

    Google Scholar 

  • Petit F, Kalombo K (1984) L’interception des pluies par différents types de couverts forestiers. Bulletin de la Société Géographique de Liège:99–127

    Google Scholar 

  • Porada P, Van Stan JT, Kleidon A (2018) Significant contribution of non-vascular vegetation to global rainfall interception. Nat Geosci 11(8):563

    Article  Google Scholar 

  • Pound P (2017) Quantification and characterization of net precipitation bacterial flux from a subtropical epiphyte-Laden oak forest. Georgia Southern University

    Google Scholar 

  • Price A, Dunham K, Carleton T, Band L (1997) Variability of water fluxes through the black spruce (Picea mariana) canopy and feather moss (Pleurozium schreberi) carpet in the boreal forest of Northern Manitoba. J Hydrol 196(1–4):310–323

    Article  Google Scholar 

  • Price AG, Carlyle-Moses DE (2003) Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada. Agric For Meteorol 119(1–2):69–85. https://doi.org/10.1016/s0168-1923(03)00117-5

    Article  Google Scholar 

  • Price AG, Watters RJ (1989) The influence of the overstory, understory and upper soil horizons on the fluxes of some ions in a mixed deciduous forest. J Hydrol 109(1–2):185–197

    Article  Google Scholar 

  • Pryor S, Barthelmie R (2005) Liquid and chemical fluxes in precipitation, throughfall and stemflow: observations from a deciduous forest and a red pine plantation in the midwestern USA. Water Air Soil Pollut 163(1–4):203–227

    Article  Google Scholar 

  • Pypker TG, Levia DF, Staelens J, Van Stan JT (2011) Canopy structure in relation to hydrological and biogeochemical fluxes. In: Forest hydrology and biogeochemistry. Springer, pp 371–388

    Google Scholar 

  • Rosado BHP, Holder CD (2013) The significance of leaf water repellency in ecohydrological research: a review. Ecohydrology 6(1):150–161. https://doi.org/10.1002/eco.1340

    Article  Google Scholar 

  • Rowe PB, Hendrix T (1951) Interception of rain and snow by second-growth ponderosa pine. Eos, Trans Am Geophys Union 32(6):903–908

    Article  Google Scholar 

  • Sadeghaen S, Shafieajbishe R, Rafati M, Shahriari D (2002) Technical evaluations of micro irrigation systems and assessing their application in deficit irrigation and compared with surface irrigation on tomato. Iranian Ministry of Agricultural Research and Education Organization. Varamin Agrifultural Research Center

    Google Scholar 

  • Sadeghi SMM, Attarod P, Van Stan JT, Pypker TG (2016) The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: a comparison of common planted tree species in Tehran, Iran. Sci Total Environ 568:845–855. https://doi.org/10.1016/j.scitotenv.2016.06.048

  • Sadeghi SMM, Attarod P, Van Stan JT, Pypker TG, Dunkerley D (2015) Efficiency of the reformulated Gash’s interception model in semiarid afforestations. Agric For Meteorol 201:76–85. https://doi.org/10.1016/j.agrformet.2014.10.006

    Article  Google Scholar 

  • Sadeghi SMM, Van Stan JT, Pypker TG, Friesen J (2017) Canopy hydrometeorological dynamics across a chronosequence of a globally invasive species, Ailanthus altissima (Mill., tree of heaven). Agric For Meteorol 240–241:10–17. https://doi.org/10.1016/j.agrformet.2017.03.017

    Article  Google Scholar 

  • Sadeghi SMM, Van Stan JT, Pypker TG, Tamjidi J, Friesen J, Farahnaklangroudi M (2018) Importance of transitional leaf states in canopy rainfall partitioning dynamics. Eur J Forest Res 137(1):121–130

    Article  Google Scholar 

  • Schooling JT, Carlyle-Moses DE (2015) The influence of rainfall depth class and deciduous tree traits on stemflow production in an urban park. Urban Ecosyst 18(4):1261–1284. https://doi.org/10.1007/s11252-015-0441-0

    Article  Google Scholar 

  • Schooling JT, Levia DF, Carlyle-Moses DE, Dowtin AL, Brewer SE, Donkor KK, Borden SA, Grzybowski AA (2017) Stemflow chemistry in relation to tree size: a preliminary investigation of eleven urban park trees in British Columbia, Canada. Urban For Urban Green 21:129–133. https://doi.org/10.1016/j.ufug.2016.11.013

    Article  Google Scholar 

  • Schumacher J, Christiansen JR (2015) Forest canopy water fluxes can be estimated using canopy structure metrics derived from airborne light detection and ranging (LiDAR). Agric For Meteorol 203:131–141. https://doi.org/10.1016/j.agrformet.2014.12.007

    Article  Google Scholar 

  • Seastedt T (1985) Canopy interception of nitrogen in bulk precipitation by annually burned and unburned tallgrass prairie. Oecologia 66(1):88–92

    Article  Google Scholar 

  • Shen X, Anagnostou EN (2017) A framework to improve hyper-resolution hydrological simulation in snow-affected regions. J Hydrol 552:1–12

    Article  Google Scholar 

  • Shure DJ, Lewis AJ (1973) Dew formation and stem flow on common ragweed (Ambrosia artemisiifolia). Ecology 54(5):1152–1155

    Article  Google Scholar 

  • Šraj M, Brilly M, Mikoš M (2008) Rainfall interception by two deciduous Mediterranean forests of contrasting stature in Slovenia. Agric For Meteorol 148(1):121–134

    Article  Google Scholar 

  • Staelens J, De Schrijver A, Verheyen K (2007) Seasonal variation in throughfall and stemflow chemistry beneath a European beech (Fagus sylvatica) tree in relation to canopy phenology. Can J For Res 37(8):1359–1372. https://doi.org/10.1139/x07-003

    Article  Google Scholar 

  • Staelens J, De Schrijver A, Verheyen K, Verhoest NEC (2008) Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrol Process 22(1):33–45. https://doi.org/10.1002/hyp.6610

  • Sun X, Onda Y, Kato H (2014) Incident rainfall partitioning and canopy interception modeling for an abandoned Japanese cypress stand. J For Res 19(3):317–328

    Article  Google Scholar 

  • Sun Z, Li Z, Li B, Sun T, Wang H (2017) Factors influencing corn canopy throughfall at the row scale in Northeast China. Agron J 109(4):1591–1601

    Article  Google Scholar 

  • Suttie JM, Reynolds SG, Batello C (2005) Grasslands of the World, vol 34. Food & Agriculture Org

    Google Scholar 

  • Suzuki M, Kato H, Tani M, Fukushima Y (1979) Throughfall, stemflow and rainfall interception in Kiryu Experimental Catchment (I). J Japan For Soc 61(6):202–210

    Google Scholar 

  • Thimonier A (1998) Measurement of atmospheric deposition under forest canopies: some recommendations for equipment and sampling design. Environ Monit Assess 52(3):353–387

    Article  Google Scholar 

  • Toba T, Ohta T (2005) An observational study of the factors that influence interception loss in boreal and temperate forests. J Hydrol 313(3–4):208–220. https://doi.org/10.1016/j.jhydrol.2005.03.003

    Article  Google Scholar 

  • Tobón Marin C, Bouten W, Sevink J (2000) Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. J Hydrol 237(1–2):40–57

    Article  Google Scholar 

  • Tsakov H, Alexandrov A (2005) Growth of Robinia pseudoacacia L. on a reclaimed terrain in Bulgaria studied over a period of climatic anomalies. Folia Oecologica 32(1):1–5

    Google Scholar 

  • Uehara Y, Kume A, Chiwa M, Honoki H, Zhang J, Watanabe K (2015) Atmospheric deposition and interactions with Pinus pumila Regal canopy on Mount Tateyama in the Northern Japanese Alps. Arct Antarct Alp Res 47(2):389–399

    Article  Google Scholar 

  • Uyttendaele GYP, Iroumé A (2002) The solute budget of a forest catchment and solute fluxes within a Pinus radiata and a secondary native forest site, southern Chile. Hydrol Process 16(13):2521–2536. https://doi.org/10.1002/hyp.1046

    Article  Google Scholar 

  • Van Elewijck L (1989) Influence of leaf and branch slope on stemflow amount. CATENA 16(4–5):525–533

    Article  Google Scholar 

  • Van Stan II JT (2012) Controls and dynamics of canopy-derived dissolved organic matter from co-dominant broadleaved deciduous canopies to the soil of a temperate catchment in the northeastern United States. University of Delaware

    Google Scholar 

  • Van Stan II JT, Underwood SJ, Friesen J (2018) Urban Forestry: An underutilized tool in water management. In: Friesen J, Rodriguez-Sinobas L (eds) Advanced tools for integrated water resources management, vol 3. Advances in chemical pollution, environmental management and protection. Elsevier, London, United Kingdom, pp 35–62. https://doi.org/10.1016/bs.apmp.2018.04.003

  • Van Stan II JT, Pypker TG (2015) A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci Total Environ 536:813–824. https://doi.org/10.1016/j.scitotenv.2015.07.134

  • Van Stan II JT, Van Stan JH, Levia Jr. DF (2014) Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species. Int J Biometeorol 58(10):2059–2069. https://doi.org/10.1007/s00484-014-0807-7

  • Van Stan JT, Gay TE, Lewis ES (2016a) Use of multiple correspondence analysis (MCA) to identify interactive meteorological conditions affecting relative throughfall. J Hydrol 533:452–460. https://doi.org/10.1016/j.jhydrol.2015.12.039

    Article  Google Scholar 

  • Van Stan JT, Gordon DA (2018) Mini-review: stemflow as a resource limitation to near-stem soils. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00248

    Article  Google Scholar 

  • Van Stan JT, Levia Jr DF (2010) Inter and intraspecific variation of stemflow production from Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to bark microrelief in the eastern United States. Ecohydrol Ecosyst Land Water Process Interact Ecohydrogeomorphol 3(1):11–19

    Google Scholar 

  • Van Stan JT, Lewis ES, Hildebrandt A, Rebmann C, Friesen J (2016b) Impact of interacting bark structure and rainfall conditions on stemflow variability in a temperate beech-oak forest, central Germany. Hydrol Sci J 61(11):2071–2083. https://doi.org/10.1080/02626667.2015.1083104

    Article  Google Scholar 

  • Van Stan JT, Wagner S, Guillemette F, Whitetree A, Lewis J, Silva L, Stubbins A (2017) Temporal dynamics in the concentration, flux, and optical properties of tree-derived dissolved organic matter in an epiphyte-laden oak-cedar forest. J Geophys Res Biogeosci 122(11):2982–2997. https://doi.org/10.1002/2017jg004111

    Article  Google Scholar 

  • Varhola A, Coops NC, Weiler M, Moore RD (2010) Forest canopy effects on snow accumulation and ablation: an integrative review of empirical results. J Hydrol 392(3–4):219–233

    Article  Google Scholar 

  • Veatch W, Brooks P, Gustafson J, Molotch N (2009) Quantifying the effects of forest canopy cover on net snow accumulation at a continental, mid-latitude site. Ecohydrology 2(2):115–128

    Article  Google Scholar 

  • Verry ES, Timmons D (1977) Precipitation nutrients in the open and under two forests in Minnesota. Can J For Res 7(1):112–119

    Article  Google Scholar 

  • Voigt G, Zwolinski M (1964) Absorption of stemflow by bark of young red and white pines. For Sci 10(3):277–282

    Google Scholar 

  • Voss S, Zimmermann B, Zimmermann A (2016) Detecting spatial structures in throughfall data: the effect of extent, sample size, sampling design, and variogram estimation method. J Hydrol 540:527–537. https://doi.org/10.1016/j.jhydrol.2016.06.042

    Article  Google Scholar 

  • Wan SQ, Chen LZ (2000) Characteristics of precipitation and forest stem flow of Dongling mountainous area. Acta Ecol Sin 20(1):61–67

    Google Scholar 

  • Wheater H, Langan S, Miller J, Ferrier R (1987) The determination of hydrological flow paths and associated hydrochemistry in forested catchments in central Scotland. In: Proceedings of the Vancouver symposium. International Association of Hydrological Sciences (IAHS)

    Google Scholar 

  • Whitford WG, Anderson J, Rice PM (1997) Stemflow contribution to the ‘fertile island’effect in creosotebush, Larrea tridentata. J Arid Environ 35(3):451–457

    Article  Google Scholar 

  • Xiao Q, McPherson EG (2011) Rainfall interception of three trees in Oakland, California. Urban Ecosyst 14(4):755–769

    Article  Google Scholar 

  • Yankine SA, Van Stan J, Mesta DC, Côté J-F, Hildebrandt A, Friesen J, Maldonado G (2017) What controls stemflow? A LiDAR-based investigation of individual tree canopy structure, neighborhood conditions, and meteorological factors. In: AGU Fall Meeting Abstracts

    Google Scholar 

  • Yarie J (1980) The role of understory vegetation in the nutrient cycle of forested ecosystems in the mountain hemlock biogeoclimatic zone. Ecology 61(6):1498–1514

    Article  Google Scholar 

  • Young JA, Evans RA, Easi DA (1984) Stem flow on western juniper (Juniperus occidentalis) trees. Weed Sci 32(3):320–327

    Article  Google Scholar 

  • Yuan C, Gao G, Fu B (2016) Stemflow of a xerophytic shrub (Salix psammophila) in northern China: implication for beneficial branch architecture to produce stemflow. J Hydrol 539:577–588

    Article  Google Scholar 

  • Yue X-f, Cui J-y, Zhang T-h, Wang S-k, Lian J, Wang X-y, Yun J-y (2014) Characteristics of rainfall interception and redistribution for Salix gordejevii in Horqin Sandy Land, Northeast China. Acta Pratacultuae Sinica 22(6):46–52

    Google Scholar 

  • Zabret K, Šraj M (2015) Can urban trees reduce the impact of climate change on storm runoff? Urbani Izziv 26:S165–S178

    Article  Google Scholar 

  • Zehe E, Ehret U, Pfister L, Blume T, Schröder B, Westhoff M, Jackisch C, Schymanski S, Weiler M, Schulz K (2014) HESS opinions: functional units: a novel framework to explore the link between spatial organization and hydrological functioning of intermediate scale catchments. Hydrol Earth Syst Sci Discuss 11(3)

    Google Scholar 

  • Zehe E, Graeff T, Morgner M, Bauer A, Bronstert A (2010) Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains. Hydrol Earth Syst Sci 14(6):873

    Article  Google Scholar 

  • Zhang Y-F, Wang X-P, Hu R, Pan Y-X (2018) Meteorological influences on process-based spatial-temporal pattern of throughfall of a xerophytic shrub in arid lands of northern China. Sci Total Environ 619:1003–1013

    Article  Google Scholar 

  • Zheng J, Fan J, Zhang F, Yan S, Xiang Y (2018) Rainfall partitioning into throughfall, stemflow and interception loss by maize canopy on the semi-arid Loess Plateau of China. Agric Water Manag 195:25–36

    Article  Google Scholar 

  • Zimmermann A, Zimmermann B (2014) Requirements for throughfall monitoring: the roles of temporal scale and canopy complexity. Agric For Meteorol 189:125–139

    Article  Google Scholar 

  • Zimmermann A, Zimmermann B, Elsenbeer H (2009) Rainfall redistribution in a tropical forest: spatial and temporal patterns. Water Resour Res 45(11). https://doi.org/10.1029/2008wr007470

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Moein Sadeghi .

Editor information

Editors and Affiliations

Appendix A

Appendix A

Canopy height-to-width ratios (H:W) and mean stemflow values in Fig. 4.7b.

Genus/spp

H:W

Stemflow

Citations

(–)

(–)

(% rain)

(–)

Acer

1.3

2.0

Courchesne and Hendershot (1988), Mahendrappa (1974), Malone (2015), Schooling and Carlyle-Moses (2015), Schooling et al. (2017)

Big-leaf maple

3.0

7.0

Hamdan and Schmidt (2012)

Ailanthus

3.6

7.2

Sadeghi et al. (2017)

Betula

1.4

2.9

Abrahamsen et al. (1977), Courchesne and Hendershot (1988), Molchanov (1963), Wan and Chen (2000), Zabret and Šraj (2015)

Carya

1.1

0.9

Peterson and Rolfe (1982)

Catalpa

1.0

0.4

Schooling and Carlyle-Moses (2015)

Cercis

0.9

0.8

Peterson and Rolfe (1982)

Chamaecyparis

17.8

10.6

Sun et al. (2014)

Cupressus

10.5

9.6

Nasiri et al. (2012), Sadeghi et al. (2016), Suzuki et al. (1979)

Fagus

1.3

3.7

Chang and Matzner (2000), Ghorbani and Rahmani (2009), Krämer and Hölscher (2009), Mosello et al. (2002), Neal et al. (1993), Noirfalise (1958), Petit and Kalombo (1984), Schooling and Carlyle-Moses (2015), Schooling et al. (2017), Staelens et al. (2008), Van Stan II (2012)

Fraxinus

1.3

1.4

Malone (2015)

Gleditsia

1.1

0.6

Schooling and Carlyle-Moses (2015)

Ilex

1.4

5.2

Aboal et al. (2015), Masukata et al. (1990)

Juglans

1.0

1.0

Lazerjan (2012)

Juniperus

0.9

2.4

Badri and Gauquelin (1998), Van Stan et al. (2017), Young et al. (1984)

Liquidambar

1.5

4.1

Xiao and McPherson (2011)

Picea

1.7

4.4

Aussenac (1968), Bergkvist and Folkeson (1995), Cape et al. (1991), Johnson (1990), Mahendrappa (1974), Nihlgård (1970), Wheater et al. (1987)

Pinus

1.6

5.0

Bryant et al. (2005), Cape et al. (1991), Crockford and Richardson (2000), Foster (1974), Ibrahim et al. (1982), Lawson (1967), Lei et al. (1994a, b), Mahendrappa (1974), Majima and Tase (1982), Pryor and Barthelmie (2005), Sadeghi et al. (2016), Toba and Ohta (2005), Uyttendaele and Iroumé (2002)

Pinus (juvenile)

2.0

4.4

McKee and Carlyle-Moses (2016) *Assumed 1-m bole to bottom of H

Platanus

1.0

0.2

Peterson and Rolfe (1982)

Populus

1.4

3.9

Freedman and Prager (1986), Ma et al. (2014), Mahendrappa (1974), Molchanov (1963), Moore (2003), Verry and Timmons (1977)

Prunus

1.2

1.0

Schooling and Carlyle-Moses (2015)

Quercus

1.1

1.6

Pound (2017)

Robinia

1.1

1.6

Sadeghi et al. (2016), Schooling and Carlyle-Moses (2015)

Salix

1.3

3.3

Li et al. (2009), Schooling and Carlyle-Moses (2015), Yuan et al. (2016), Yue et al. (2014)

Thuja

2.5

6.1

Mathers and Taylor (1983)

Tilia

1.1

1.5

Schooling and Carlyle-Moses (2015)

Erica

2.9

6.5

Aboal et al. (1999)

Prestoea

6.5

9.8

Frangi and Lugo (1985) *W = 2.6 m from landscaping manual

Nothofagus

8.2

10.2

Godoy et al. (1999, 2001)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadeghi, S.M.M., Gordon, D.A., Van Stan II, J.T. (2020). A Global Synthesis of Throughfall and Stemflow Hydrometeorology . In: Van Stan, II, J., Gutmann, E., Friesen, J. (eds) Precipitation Partitioning by Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-29702-2_4

Download citation

Publish with us

Policies and ethics