Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 199 Accesses

Abstract

We have successfully reproduced the spectral anisotropy characteristic of slow and fast winds and associate them to the initial spectral anisotropy, cross helicity and radial expansion. We have also proven that, independently of the spectral anisotropy, turbulent heating is able to slow down the adiabatic cooling of the solar wind, giving a temperature evolution proportional to 1/R. Our results are commented in the context of the upcoming Parker Solar Probe and Solar Orbiter missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dasso Milano LJ, Matthaeus WH, Smith CW (2005) Anisotropy in fast and slow Solar Wind Fluctuations. Astrophys J 635(2):L181–L184. https://doi.org/10.1086/499559

  2. Fox NJ, Velli M, Bale S, Decker R, Driesman A, Howard R, Kasper JC, Kinnison J, Kusterer M, Lario D, Lockwood MK, McComas DJ, Raouafi NE, Szabo A (2016) The solar probe plus mission: humanity’s first visit to our star. Space Sci Rev 1–42: https://doi.org/10.1007/s11214-015-0211-6

  3. Grappin R, Léorat J, Pouquet AG (1983) Dependence of MHD turbulence spectra on the velocity field-magnetic field correlation. Astron Astrophys 126:51–58

    ADS  Google Scholar 

  4. Lamy H, Pierrard V, Maksimovic M, Lemaire JF (2003) A kinetic exospheric model of the solar wind with a nonmonotonic potential energy for the protons. J Geophys Res (Space Physics) 108:1047. https://doi.org/10.1029/2002JA009487

    Article  ADS  Google Scholar 

  5. Lemaire J, Pierrard V (2001) Kinetic models of Solar and Polar Winds. Ap&SS 277:169–180. https://doi.org/10.1023/A:1012245909542

    Article  ADS  MATH  Google Scholar 

  6. Matthaeus WH, Goldstein ML, Roberts DA (1990) Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J Geophys Res 95(A12):20673–20683. https://doi.org/10.1029/JA095iA12p20673

    Article  ADS  Google Scholar 

  7. Müller D, Marsden RG, St Cyr OC, Gilbert HR (2013) Solar Orbiter. Exploring the Sun-Heliosphere connection. Sol Phys 285:25–70. https://doi.org/10.1007/s11207-012-0085-7

    Article  Google Scholar 

  8. Pierrard V (2012) Solar Wind electron transport: interplanetary electric field and heat conduction. Space Sci Rev 172:315–324. https://doi.org/10.1007/s11214-011-9743-6

    Article  ADS  Google Scholar 

  9. Verdini A, Grappin R (2016) Beyond the Maltese Cross: geometry of turbulence between 0.2 and 1 au. Astrophys J 831(2):1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Montagud-Camps .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montagud-Camps, V. (2019). Conclusions. In: Turbulent Heating and Anisotropy in the Solar Wind. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-30383-9_13

Download citation

Publish with us

Policies and ethics