Skip to main content

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 24))

Abstract

Autism spectrum disorder (ASD) is a heterogeneous condition affecting >1% of all children, characterized by impaired social interactions, repetitive behavior and a widely variable spectrum of comorbidities. These comorbidities may include developmental delay, gastrointestinal problems, cardiac disorders, immune and autoimmune dysregulation, neurological manifestations (e.g., epilepsy, intellectual disability), and other clinical features. This wide phenotypic heterogeneity is difficult to predict and manifests across a wide range of ages and with a high degree of difference in severity, making disease management and prediction of a successful intervention very difficult. Recently, advances in genomics and other molecular technologies have enabled the study of ASD on a molecular level, illuminating genes and pathways whose perturbations help explain the clinical variability among patients, and whose impairments provide possible opportunities for better treatment options. In fact, there are now >1000 genes that have been linked to ASD through genetic studies of more than 10,000 patients and their families. This chapter discusses these discoveries and in the context of recent developments in genomics and bioinformatics, while also examining the trajectory of gene discovery efforts over the past few decades, as both better ascertainment and global attention have been given to this highly vulnerable patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elsabbagh, M., et al. (2012). Global prevalence of autism and other pervasive developmental disorders. Autism Research - Wiley Online Library. [Online]. Retrieved January 28, 2019, from https://onlinelibrary.wiley.com/doi/full/10.1002/aur.239

  2. Aldinger, K. A., et al. (2015). Patterns of risk for multiple co-occurring medical conditions replicate across distinct cohorts of children with autism spectrum disorder. Autism Research - Wiley Online Library. [Online]. Retrieved January 28, 2019, from https://onlinelibrary.wiley.com/doi/full/10.1002/aur.1492

  3. Ozonoff, S., et al. (2011). Recurrence risk for autism spectrum disorders: A Baby Siblings Research Consortium study. Pediatrics, 128(3), e488–e495.

    PubMed  PubMed Central  Google Scholar 

  4. Bailey, A., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25(01), 63.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg, R. E., Law, J. K., Yenokyan, G., McGready, J., Kaufmann, W. E., & Law, P. A. (2009). Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Archives of Pediatrics & Adolescent Medicine, 163(10), 907.

    Article  Google Scholar 

  6. Hallmayer, J. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68(11), 1095.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Larsson, H., Hultman, C. M., & Reichenberg, A. (2014). The familial risk of autism. JAMA, 311(17), 1770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Colvert, E., et al. (2015). Heritability of autism spectrum disorder in a UK population-based twin sample. JAMA Psychiatry, 72(5), 415.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333–351.

    Article  CAS  PubMed  Google Scholar 

  10. Geschwind, D. H., & State, M. W. (2015). Gene hunting in autism spectrum disorder: On the path to precision medicine. The Lancet Neurology, 14(11), 1109–1120.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alarcón, M., Cantor, R. M., Liu, J., Gilliam, T. C., & Geschwind, D. H. (2002). Evidence for a language quantitative trait locus on chromosome 7q in multiplex autism families. The American Journal of Human Genetics, 70(1), 60–71.

    Article  PubMed  Google Scholar 

  12. Weiss, L. A., et al. (2009). A genome-wide linkage and association scan reveals novel loci for autism. Nature, 461(7265), 802–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anney, R., et al. (2012). Individual common variants exert weak effects on the risk for autism spectrum disorders. Human Molecular Genetics, 21(21), 4781–4792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma, D., et al. (2009). A genome-wide association study of autism reveals a common novel risk locus at 5p141. Annals of Human Genetics, 73(3), 263–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews. Genetics, 10(1), 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anney, R., et al. (2010). A genome-wide scan for common alleles affecting risk for autism. Human Molecular Genetics, 19(20), 4072–4082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaste, P., et al. (2015). A genome-wide association study of autism using the Simons simplex collection: Does reducing phenotypic heterogeneity in autism increase genetic homogeneity? Biological Psychiatry, 77(9), 775–784.

    Article  PubMed  Google Scholar 

  18. Bundey, S., Hardy, C., Vickers, S., Kilpatrick, M. W., & Corbett, J. A. (1994). Duplication of the 15q11-13 region in a patient with autism, epilepsy and ataxia. Developmental Medicine and Child Neurology, 36(8), 736–742.

    Article  CAS  PubMed  Google Scholar 

  19. Fine, S. E., et al. (2005). Autism spectrum disorders and symptoms in children with molecularly confirmed 22q11.2 deletion syndrome. Journal of Autism and Developmental Disorders, 35(4), 461–470.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Weiss, L. A., et al. (2008). Association between microdeletion and microduplication at 16p11.2 and autism. New England Journal of Medicine, 358(7), 667–675.

    Article  CAS  PubMed  Google Scholar 

  21. Thomas, N. S., et al. (1999). Xp deletions associated with autism in three females. SpringerLink. [Online]. Retrieved January 28, 2019, from https://link.springer.com/article/10.1007%2Fs004390050908

  22. Sanders, S. J., et al. (2011). Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams Syndrome Region, are strongly associated with autism. Neuron, 70(5), 863–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar, R. A., et al. (2008). Recurrent 16p11.2 microdeletions in autism. Human Molecular Genetics, 17(4), 628–638.

    Article  CAS  PubMed  Google Scholar 

  24. Marshall, C. R., et al. (2008). Structural variation of chromosomes in autism spectrum disorder. The American Journal of Human Genetics, 82(2), 477–488.

    Article  CAS  PubMed  Google Scholar 

  25. Pinto, D., et al. (2010). Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 466(7304), 368–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pinto, D., et al. (2014). Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. The American Journal of Human Genetics, 94(5), 677–694.

    Article  CAS  PubMed  Google Scholar 

  27. Sanders, S. J., et al. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron, 87(6), 1215–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Levy, D., et al. (2011). Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron, 70(5), 886–897.

    Article  CAS  PubMed  Google Scholar 

  29. Strauss, K. A., et al. (2006). Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. The New England Journal of Medicine, 354(13), 1370–1377.

    Article  CAS  PubMed  Google Scholar 

  30. Morrow, E. M., et al. (2008). Identifying autism loci and genes by tracing recent shared ancestry. Science, 321, 218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Novarino, G., et al. (2012). Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science, 338(6105), 394–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moessner, R., et al. (2007). Contribution of SHANK3 Mutations to Autism Spectrum Disorder. The American Journal of Human Genetics, 81(6), 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, H.-G., et al. (2008). Disruption of neurexin 1 associated with autism spectrum disorder. The American Journal of Human Genetics, 82(1), 199–207.

    Article  CAS  PubMed  Google Scholar 

  34. Berkel, S., et al. (2010). Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nature Genetics, 42(6), 489–491.

    Article  CAS  PubMed  Google Scholar 

  35. Berkel, S., et al. (2012). Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology. Human Molecular Genetics, 21(2), 344–357.

    Article  CAS  PubMed  Google Scholar 

  36. Vaags, A. K., et al. (2012). Rare deletions at the neurexin 3 locus in autism spectrum disorder. The American Journal of Human Genetics, 90(1), 133–141.

    Article  CAS  PubMed  Google Scholar 

  37. Bamshad, M. J., et al. (2011). Exome sequencing as a tool for Mendelian disease gene discovery. Nature Reviews Genetics, 12(11), 745–755.

    Article  CAS  PubMed  Google Scholar 

  38. Van der Auwera, G. A., et al. (2013). From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Current Protocols in Bioinformatics, 43, 11.10.1–11.1033.

    Article  Google Scholar 

  39. Pirooznia, M., et al. (2014). Validation and assessment of variant calling pipelines for next-generation sequencing. Human Genomics, 8(1), 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pirooznia, M., Goes, F. S., & Zandi, P. P. (2015). Whole-genome CNV analysis: Advances in computational approaches. Frontiers in Genetics, 06, 138.

    Article  CAS  Google Scholar 

  41. The 1000 Genomes Project Consortium, et al. (2015). A global reference for human genetic variation. Nature, 526(7571), 68–74.

    Article  CAS  Google Scholar 

  42. The 1000 Genomes Project Consortium, et al. (2015). An integrated map of structural variation in 2,504 human genomes. Nature, 526(7571), 75–81.

    Article  PubMed Central  CAS  Google Scholar 

  43. Exome Aggregation Consortium, et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536(7616), 285–291.

    Article  PubMed Central  CAS  Google Scholar 

  44. Durbin, R. M., et al. (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061–1073.

    Article  CAS  PubMed  Google Scholar 

  45. Fakhro, K. A., et al. (2016). The Qatar genome: A population-specific tool for precision medicine in the Middle East. Human Genome Variation, 3, 16016.

    Article  PubMed  PubMed Central  Google Scholar 

  46. For the Working Group of the American College of Medical Genetics and Genomics Laboratory Quality Assurance Committee, et al. (2013). ACMG clinical laboratory standards for next-generation sequencing. Genetics in Medicine, 15(9), 733–747.

    Article  Google Scholar 

  47. Moorthie, S., Hall, A., & Wright, C. F. (2013). Informatics and clinical genome sequencing: Opening the black box. Genetics in Medicine, 15(3), 165–171.

    Article  PubMed  Google Scholar 

  48. Gargis, A. S., et al. (2012). Assuring the quality of next-generation sequencing in clinical laboratory practice. Nature Biotechnology, 30(11), 1033–1036.

    Article  CAS  PubMed  Google Scholar 

  49. Green, R. C., et al. (2013). ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genetics in Medicine, 15(7), 565–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bamshad, M. J., et al. (2012). The Centers for Mendelian Genomics: A new large-scale initiative to identify the genes underlying rare Mendelian conditions. American Journal of Medical Genetics Part A, 158A(7), 1523–1525.

    Article  PubMed  Google Scholar 

  51. Yang, Y., et al. (2013). Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. New England Journal of Medicine, 369(16), 1502–1511.

    Article  CAS  PubMed  Google Scholar 

  52. Jurgens, J., et al. (2015). Assessment of incidental findings in 232 whole-exome sequences from the Baylor–Hopkins Center for Mendelian Genomics. Genetics in Medicine, 17(10), 782–788.

    Article  PubMed  PubMed Central  Google Scholar 

  53. On behalf of the IRDiRC Consortium Assembly, et al. (2017). The International Rare Diseases Research Consortium: Policies and guidelines to maximize impact. European Journal of Human Genetics, 25(12), 1293–1302.

    Article  PubMed Central  Google Scholar 

  54. O’Roak, B. J., et al. (2014). Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nature Communications, 5(1), 5595.

    Article  PubMed  CAS  Google Scholar 

  55. Yuen, R. K. C., et al. (2017). Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nature Neuroscience, 20(4), 602–611.

    Article  CAS  PubMed Central  Google Scholar 

  56. Rajab, A., et al. (2015). Recessive DEAF1 mutation associates with autism, intellectual disability, basal ganglia dysfunction and epilepsy. Journal of Medical Genetics, 52(9), 607–611.

    Article  CAS  PubMed  Google Scholar 

  57. Al-Mubarak, B., et al. (2017). Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorder: A trio study from Saudi families. Scientific Reports, 7(1), 5679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Leblond, C. S., et al. (2019). Both rare and common genetic variants contribute to autism in the Faroe Islands. NPJ Genomic Medicine, 4, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jamra, R. (2018). Genetics of autosomal recessive intellectual disability. Medizinische Genetik, 30(3), 323–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu, T. W., et al. (2013). Using whole-exome sequencing to identify inherited causes of autism. Neuron, 77(2), 259–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ronemus, M., Iossifov, I., Levy, D., & Wigler, M. (2014). The role of de novo mutations in the genetics of autism spectrum disorders. Nature Reviews Genetics, 15(2), 133–141.

    Article  CAS  PubMed  Google Scholar 

  62. Iossifov, I., et al. (2012). De novo gene disruptions in children on the autistic spectrum. Neuron, 74(2), 285–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Neale, B. M., et al. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485(7397), 242–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sanders, S. J., et al. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485(7397), 237–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Willsey, A. J., et al. (2013). Coexpression networks implicate human Midfetal deep cortical projection neurons in the pathogenesis of autism. Cell, 155(5), 997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dong, S., et al. (2014). De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder. Cell Reports, 9(1), 16–23.

    Article  CAS  PubMed  Google Scholar 

  67. O’Roak, B. J., et al. (2012). Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science, 338(6114), 1619–1622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. The DDD Study, et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515(7526), 209–215.

    Article  PubMed Central  CAS  Google Scholar 

  69. Turner, T. N., et al. (2016). Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. The American Journal of Human Genetics, 98(1), 58–74.

    Article  CAS  PubMed  Google Scholar 

  70. Helsmoortel, C., et al. (2014). A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nature Genetics, 46(4), 380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cheng, H., et al. (2018). Truncating variants in NAA15 are associated with variable levels of intellectual disability, autism spectrum disorder, and congenital anomalies. American Journal of Human Genetics, 102(5), 985–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Frye, R. E., & Rossignol, D. A. (2016). Identification and treatment of pathophysiological comorbidities of autism spectrum disorder to achieve optimal outcomes. Clinical Medicine Insights. Pediatrics, 10, 43–56.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Adams, J. B., et al. (2018). Comprehensive nutritional and dietary intervention for autism spectrum disorder-a randomized, controlled 12-month trial. Nutrients, 10(3), pii: E369.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid A. Fakhro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fakhro, K.A. (2020). Genomics of Autism. In: Essa, M., Qoronfleh, M. (eds) Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30402-7_3

Download citation

Publish with us

Policies and ethics