Skip to main content

A Diffusion Model for Stimulus Propagation in Remodeling Bone Tissues

  • Chapter
  • First Online:
Higher Gradient Materials and Related Generalized Continua

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 120))

  • 326 Accesses

Abstract

The mechanically driven biological stimulus in bone tissues regulates and controls the action of special cells called osteoblasts and osteoclasts. Different models have been proposed to describe the important and not yet completely understood phenomena related to this ‘feedback’ process. In Lekszycki and dell’Isola (2012) an integro-differential system of equations has been studied to describe the remodeling process in reconstructed bones where the biological stimulus in a given instant t depends on the deformation state of the tissue at the same instant. Instead biological knowledge suggests that the biological stimulus, once produced, is ‘diffused’ in bone tissue to reach the target cells. In this paper, we propose a model for de-scribing biological stimulus diffusion in remodeling tissues in which diffusive time dependent phenomena are taken into account. Some preliminary numerical simulations are presented which suggest that this model is promising and deserves further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abali BE, Völlmecke C, Woodward B, Kashtalyan M, Guz I, Müller WH (2012) Numerical modeling of functionally graded materials using a variational formulation. Continuum Mechanics and Thermodynamics 24(4-6):377–390

    Google Scholar 

  • Abeyaratne R, Knowles JK (2006) Evolution of Phase Transitions. A Continuum Theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Agerbaek MO, Eriksen EF, Kragstrup J, Mosekilde L, Melsen F (1991) A reconstruction of the remodelling cycle in normal human cortical iliac bone. Bone and mineral 12(2):101–112

    Google Scholar 

  • Allena R, Cluzel C (2018) Heterogeneous directions of orthotropy in three-dimensional structures: finite element description based on diffusion equations. Mathematics and Mechanics of Complex Systems 6(4):339–351

    Google Scholar 

  • Altenbach H, Eremeyev V (2009) Eigen-vibrations of plates made of functionally graded material. Computers, Materials, & Continua 9(2):153–178

    Google Scholar 

  • Altenbach H, Eremeyev V (2015) On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Mathematics and Mechanics of Complex Systems 3(3):273–283

    Google Scholar 

  • Altenbach H, Eremeyev VA (2014) Vibration analysis of non-linear 6-parameter prestressed shells. Meccanica 49(8):1751–1761

    Google Scholar 

  • Altenbach H, Eremeyev VA, Naumenko K (2015) On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 95(10):1004–1011

    Google Scholar 

  • Amar MB, Goriely A (2005) Growth and instability in elastic tissues. Journal of the Mechanics and Physics of Solids 53(10):2284–2319

    Google Scholar 

  • Ambrosi D, Guillou A (2007) Growth and dissipation in biological tissues. Continuum Mechanics and Thermodynamics 19(5):245–251

    Google Scholar 

  • Ambrosi D, Preziosi L, Vitale G (2010) The insight of mixtures theory for growth and remodeling. Zeitschrift für angewandte Mathematik und Physik 61(1):177–191

    Google Scholar 

  • Andreaus U, Giorgio I, Lekszycki T (2014) A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 94(12):978–1000

    Google Scholar 

  • Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal Foams: a Design Guid. Butterworth-Heinemann, Boston

    Google Scholar 

  • Ateshian GA (2007) On the theory of reactive mixtures for modeling biological growth. Biomechanics and Modeling in Mechanobiology 6(6):423–445

    Google Scholar 

  • Balobanov V, Khakalo S, Niiranen J (2016) Isogeometric analysis of gradient-elastic 1D and 2D problems. In: Altenbach H, Forest S (eds) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol 42, Springer, Cham

    Google Scholar 

  • Beaupre GS, Orr TE, Carter DR (1990a) An approach for time-dependent bone modeling and remodeling—application: A preliminary remodeling simulation. Journal of Orthopaedic Research 8(5):662–670

    Google Scholar 

  • Beaupre GS, Orr TE, Carter DR (1990b) An approach for time-dependent bone modeling and remodeling—theoretical development. Journal of Orthopaedic Research 8(5):651–661

    Google Scholar 

  • Bednarczyk E, Lekszycki T (2016) A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset. Zeitschrift für angewandte Mathematik und Physik 67(4):94

    Google Scholar 

  • Berezovski A, Engelbrecht J, Maugin GA (2008) Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, New Jersey et al.

    Google Scholar 

  • Berezovski A, Yildizdag ME, Scerrato D (2018) On the wave dispersion in microstructured solids. Continuum Mechanics and Thermodynamics pp 1–20, https://doi.org/10.1007/s00161-018-0683-1

  • Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–615

    Google Scholar 

  • Bonucci E (2009) The osteocyte: the underestimated conductor of the bone orchestra. Rendiconti Lincei 20(3):237–254

    Google Scholar 

  • Camar-Eddine M, Seppecher P (2001) Non-local interactions resulting from the homogenization of a linear diffusive medium. Comptes Rendus de l’Academie des Sciences Series I Mathematics 332(5):485–490

    Google Scholar 

  • Carlen EA, Carvalho MC, Esposito R, Lebowitz JL, Marra R (2009) Droplet minimizers for the Gates–Lebowitz–Penrose free energy functional. Nonlinearity 22(12):2919

    Google Scholar 

  • Carpentier VT, Wong J, Yeap Y, Gan C, Sutton-Smith P, Badiei A, Fazzalari NL, Kuliwaba JS (2012) Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: Implications for bone remodeling. Bone 50(3):688–694

    Google Scholar 

  • Cazzani A, Malagù M, Turco E (2016a) Isogeometric analysis of plane-curved beams. Mathematics and Mechanics of Solids 21(5):562–577

    Google Scholar 

  • Cazzani A, Malagù M, Turco E, Stochino F (2016b) Constitutive models for strongly curved beams in the frame of isogeometric analysis. Mathematics and Mechanics of Solids 21(2):182–209

    Google Scholar 

  • Chatzigeorgiou G, Javili A, Steinmann P (2014) Unified magnetomechanical homogenization framework with application to magnetorheological elastomers. Mathematics and Mechanics of Solids 19(2):193–211

    Google Scholar 

  • Chen AE, Ginty DD, Fan CM (2005) Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 433(7023):317

    Google Scholar 

  • Cluzel C, Allena R (2018) A general method for the determination of the local orthotropic directions of heterogeneous materials: application to bone structures using μCT images. Mathematics and Mechanics of Complex Systems 6(4):353–367

    Google Scholar 

  • Colangeli M, De Masi A, Presutti E (2016) Latent heat and the Fourier law. Physics Letters A 380(20):1710–1713

    Google Scholar 

  • Colangeli M, De Masi A, Presutti E (2017) Microscopic models for uphill diffusion. Journal of Physics A: Mathematical and Theoretical 50(43):435,002

    Google Scholar 

  • Contrafatto L, Cuomo M (2006) A framework of elastic–plastic damaging model for concrete under multiaxial stress states. International Journal of Plasticity 22(12):2272–2300

    Google Scholar 

  • Cowin SC (1999) Bone poroelasticity. Journal of Biomechanics 32(3):217–238

    Google Scholar 

  • Cowin SC (ed) (2001) Bone Mechanics Handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Cuomo M, Contrafatto L, Greco L (2014) A variational model based on isogeometric interpolation for the analysis of cracked bodies. International Journal of Engineering Science 80:173–188

    Google Scholar 

  • Dallas SL, Bonewald LF (2010) Dynamics of the transition from osteoblast to osteocyte. Annals of the New York Academy of Sciences 1192(1):437–443

    Google Scholar 

  • De Masi A, Ferrari PA, Lebowitz JL (1986) Reaction-diffusion equations for interacting particle systems. Journal of Statistical Physics 44(3-4):589–644

    Google Scholar 

  • De Masi A, Gobron T, Presutti E (1995) Travelling fronts in non-local evolution equations. Archive for Rational Mechanics and Analysis 132(2):143–205

    Google Scholar 

  • dell’Isola F, Seppecher P, Madeo A (2012) How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift für angewandte Mathematik und Physik 63(6):1119–1141

    Google Scholar 

  • Di Carlo A, Quiligotti S (2002) Growth and balance. Mechanics Research Communications 29(6):449–456

    Google Scholar 

  • Diebels S, Steeb H (2003) Stress and couple stress in foams. Computational Materials Science 28(3–4):714–722

    Google Scholar 

  • Engelbrecht J, Berezovski A (2015) Reflections on mathematical models of deformation waves in elastic microstructured solids. Mathematics and Mechanics of Complex Systems 3(1):43–82

    Google Scholar 

  • Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. International Journal of Plasticity 16(7):951–978

    Google Scholar 

  • Eremeyev VA, PietraszkiewiczW(2009) Phase transitions in thermoelastic and thermoviscoelastic shells. Archives of Mechanics 61(1):41–67

    Google Scholar 

  • Eremeyev VA, Pietraszkiewicz W (2011) Thermomechanics of shells undergoing phase transition. Journal of Mechanics and Physics of Solids 59(7):1395–1412

    Google Scholar 

  • Eremeyev VA, Pietraszkiewicz W (2016) Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Mathematics and Mechanics of Solids 21(2):210–221

    Google Scholar 

  • Eremeyev VA, Lebedev LP, Altenbach H (2013) Foundations of Micropolar Mechanics. Springer, Berlin

    Google Scholar 

  • Eremeyev VA, Lebedev LP, Cloud MJ (2015) The Rayleigh and Courant variational principles in the six-parameter shell theory. Mathematics and Mechanics of Solids 20(7):806–822

    Google Scholar 

  • Eriksen EF (2010) Cellular mechanisms of bone remodeling. Reviews in Endocrine and Metabolic Disorders 11(4):219–227

    Google Scholar 

  • Franciosi P, Spagnuolo M, Salman OU (2019) Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Continuum Mechanics and Thermodynamics 31(1):101–132

    Google Scholar 

  • Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. The Anatomical Record 219(1):1–9

    Google Scholar 

  • Fung YC (2006) Biomechanics. Mechanical Properties of Living Tissues, 2nd edn. Springer, New York

    Google Scholar 

  • Ganghoffer JF (2012) A contribution to the mechanics and thermodynamics of surface growth. application to bone external remodeling. International Journal of Engineering Science 50(1):166– 91

    Google Scholar 

  • Garikipati K, Olberding JE, Narayanan H, Arruda EM, Grosh K, Calve S (2006) Biological remodelling: stationary energy, configurational change, internal variables and dissipation. Journal of the Mechanics and Physics of Solids 54(7):1493–1515

    Google Scholar 

  • George D, Allena R, Remond Y (2017) Mechanobiological stimuli for bone remodeling: mechanical energy, cell nutriments and mobility. Computer Methods in Biomechanics and Biomedical Engineering 20(S1):91–92

    Google Scholar 

  • George D, Allena R, Remond Y (2018) A multiphysics stimulus for continuum mechanics bone remodeling. Mathematics and Mechanics of Complex Systems 6(4):307–319

    Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular Solids: Structure and Properties, 2nd edn. Cambridge Solid State Science Series, Cambridge University Press, Cambridge

    Google Scholar 

  • Giorgio I, Andreaus U, Scerrato D, dell’Isola F (2016) A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomechanics and Modeling in Mechanobiology 15(5):1325–1343

    Google Scholar 

  • Giorgio I, Andreaus U, dell’Isola F, Lekszycki T (2017a) Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mechanics Letters 13:141–147

    Google Scholar 

  • Giorgio I, Andreaus U, Lekszycki T, Della Corte A (2017b) The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Mathematics and Mechanics of Solids 22(5):969–987

    Google Scholar 

  • Giorgio I, Andreaus U, Scerrato D, Braidotti P (2017c) Modeling of a non-local stimulus for bone remodeling process under cyclic load: Application to a dental implant using a bioresorbable porous material. Mathematics and Mechanics of Solids 22(9):1790–1805

    Google Scholar 

  • Goda I, Assidi M, Ganghoffer JF (2014) A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomechanics and Modeling in Mechanobiology 13(1):53–83

    Google Scholar 

  • Gong Y, Slee RB, Fukai N, et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4):513–523

    Google Scholar 

  • Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. In: Mondaini RP, Pardalos PM (eds) Mathematical Modelling of Biosystems, Applied Optimization, vol 102, Springer, pp 1–44

    Google Scholar 

  • Hambli R (2014) Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Frontiers in Bioengineering and Biotechnology 2(6):1–12

    Google Scholar 

  • Himeno-Ando A, Izumi Y, Yamaguchi A, Iimura T (2012) Structural differences in the osteocyte network between the calvaria and long bone revealed by three-dimensional fluorescence morphometry, possibly reflecting distinct mechano-adaptations and sensitivities. Biochemical and Biophysical Research Communications 417(2):765–770

    Google Scholar 

  • Holzapfel GA, Ogden RW (eds) (2006) Mechanics of Biological Tissue. Springer, Berlin

    Google Scholar 

  • van Hove RP, Nolte PA, Vatsa A, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2009) Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density — Is there a role for mechanosensing? Bone 45(2):321–329

    Google Scholar 

  • Imatani S, Maugin GA (2002) A constitutive model for material growth and its application to threedimensional finite element analysis. Mechanics Research Communications 29(6):477–483

    Google Scholar 

  • Khalili N, Selvadurai APS (2003) A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity. Geophysical Research Letters 30(24)

    Google Scholar 

  • Komori T (2013) Functions of the osteocyte network in the regulation of bone mass. Cell and Tissue Research 352(2):191–198

    Google Scholar 

  • Kühl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends in Genetics 16(7):279–283

    Google Scholar 

  • Lekszycki T, dell’Isola F (2012) A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 92(6):426–444

    Google Scholar 

  • Lekszycki T, Bucci S, Del Vescovo D, Turco E, Rizzi NL (2017) A comparison between different approaches for modelling media with viscoelastic properties via optimization analyses. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 97(5):515–531

    Google Scholar 

  • Lemaire T, Kaiser J, Naili S, Sansalone V (2010) Modelling of the transport in electrically charged porous media including ionic exchanges. Mechanics Research Communications 37(5):495–499

    Google Scholar 

  • Li J, Slesarenko V, Rudykh S (2019) Microscopic instabilities and elastic wave propagation in finitely deformed laminates with compressible hyperelastic phases. European Journal of Mechanics-A/Solids 73:126–136

    Google Scholar 

  • Lu Y, Lekszycki T (2017) Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute. Mathematics and Mechanics of Solids 22(10):1997–2010

    Google Scholar 

  • Lu Y, Lekszycki T (2018) New description of gradual substitution of graft by bone tissue including biomechanical and structural effects, nutrients supply and consumption. Continuum Mechanics and Thermodynamics 30(5):995–1009

    Google Scholar 

  • Lurie S, Solyaev Y, Volkov A, Volkov-Bogorodskiy D (2018a) Bending problems in the theory of elastic materials with voids and surface effects. Mathematics and Mechanics of Solids 23(5):787–804

    Google Scholar 

  • Lurie SA, Kalamkarov YO A L and Solyaev, Ustenko AD, Volkov AV (2018b) Continuum microdilatation modeling of auxetic metamaterials. International Journal of Solids and Structures 132:188–200

    Google Scholar 

  • Madeo A, George D, Lekszycki T, Nierenberger M, Remond Y (2012) A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus Mécanique 340(8):575–589

    Google Scholar 

  • Martin RB (1984) Porosity and specific surface of bone. Critical Reviews™ in Biomedical Engineering 10(3):179–222

    Google Scholar 

  • Menzel A (2005) Modelling of anisotropic growth in biological tissues. Biomechanics and Modeling in Mechanobiology 3(3):147–171

    Google Scholar 

  • Misra A, Poorsolhjouy P (2015) Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Mathematics and Mechanics of Complex Systems 3(3):285–308

    Google Scholar 

  • Misra A, Marangos O, Parthasarathy R, Spencer P (2013) Micro-scale analysis of compositional and mechanical properties of dentin using homotopic measurements. In: Andreaus U, Iacoviello D (eds) Biomedical Imaging and Computational Modeling in Biomechanics. Lecture Notes in Computational Vision and Biomechanics, vol 4, Springer, Dordrecht, pp 131–141

    Google Scholar 

  • Misra A, Parthasarathy R, Singh V, Spencer P (2015) Micro-poromechanics model of fluidsaturated chemically active fibrous media. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 95(2):215–234

    Google Scholar 

  • Mlodzik M (2002) Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends in Genetics 18(11):564–571

    Google Scholar 

  • Mullender MG, Huiskes R, Weinans H (1994) A physiological approach to the simulation of bone remodeling as a self-organizational control process. Journal of Biomechanics 27(11):1389– 1394

    Google Scholar 

  • Niiranen J, Niemi AH (2017) Variational formulations and general boundary conditions for sixth-order boundary value problems of gradient-elastic Kirchhoff plates. European Journal of Mechanics-A/Solids 61:164–179

    Google Scholar 

  • Niiranen J, Balobanov V, Kiendl J, Hosseini SB (2019) Variational formulations, model comparisons and numerical methods for Euler–Bernoulli micro-and nano-beam models. Mathematics and Mechanics of Solids 24(1):312–335

    Google Scholar 

  • Park HC, Lakes RS (1986) Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. Journal of Biomechanics 19(5):385–397

    Google Scholar 

  • Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407(6803):535

    Google Scholar 

  • Placidi L, Barchiesi E (2018) Energy approach to brittle fracture in strain-gradient modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2210):20170,878

    Google Scholar 

  • Placidi L, Barchiesi E, Misra A (2018a) A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Mathematics and Mechanics of Complex Systems 6(2):77–100

    Google Scholar 

  • Placidi L, Misra A, Barchiesi E (2018b) Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift für angewandte Mathematik und Physik 69(3):56

    Google Scholar 

  • Prakash C, Singh S, Farina I, Fraternali F, Feo L (2018) Physical-mechanical characterization of biodegradable Mg-3Si-HA composites. PSU Research Review 2(2):152–174

    Google Scholar 

  • Prendergast PJ, Taylor D (1994) Prediction of bone adaptation using damage accumulation. Journal of Biomechanics 27(8):1067–1076

    Google Scholar 

  • Roux W (1895) Der Kampf der Teile im Organismus. 1881. Leipzig: Engelmann Ruimerman R, Hilbers P, van Rietbergen B, Huiskes R (2005) A theoretical framework for strainrelated trabecular bone maintenance and adaptation. Journal of Biomechanics 38(4):931–41

    Google Scholar 

  • Sansalone V, Kaiser J, Naili S, Lemaire T (2013) Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu. Biomechanics and Modeling in Mechanobiology 12(3):533–553

    Google Scholar 

  • Scala I, Rosi G, Nguyen VH, Vayron R, Haiat G, Seuret S, Jaffard S, Naili S (2018) Ultrasonic characterization and multiscale analysis for the evaluation of dental implant stability: A sensitivity study. Biomedical Signal Processing and Control 42:37–44

    Google Scholar 

  • Seppecher P (1993) Equilibrium of a Cahn-Hilliard fluid on a wall: influence of the wetting properties of the fluid upon the stability of a thin liquid film. European Journal of Mechanics Series B Fluids 12:69–69

    Google Scholar 

  • Seppecher P (2000) Second-gradient theory: application to Cahn-Hilliard fluids. In: Maugin GA, Drouot R, Sidoroff F (eds) Continuum Thermomechanics. Solid Mechanics and Its Applications, vol 76, Springer, Dordrecht, pp 379–388

    Google Scholar 

  • Spagnuolo M, Barcz K, Pfaff A, dell’Isola F, Franciosi P (2017) Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mechanics Research Communications 83:47–52

    Google Scholar 

  • Spingarn C, Wagner D, Remond Y, George D (2017) Multiphysics of bone remodeling: a 2D mesoscale activation simulation. Bio-medical Materials and Engineering 28(s1):S153–S158

    Google Scholar 

  • Stern AR, Nicolella DP (2013) Measurement and estimation of osteocyte mechanical strain. Bone 54(2):191–195

    Google Scholar 

  • Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Applied Mechanics Reviews 48:487–545

    Google Scholar 

  • Taber LA (2009) Towards a unified theory for morphomechanics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367(1902):3555–3583

    Google Scholar 

  • Turner CH (1991) Homeostatic control of bone structure: An application of feedback theory. Bone 12(3):203–217

    Google Scholar 

  • Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23(5):399–407

    Google Scholar 

  • Vatsa A, Breuls RG, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2008) Osteocyte morphology in fibula and calvaria—Is there a role for mechanosensing? Bone 43(3):452–458

    Google Scholar 

  • Yang JFC, Lakes RS (1982) Experimental study of micropolar and couple stress elasticity in compact bone in bending. Journal of Biomechanics 15(2):91–98

    Google Scholar 

  • Yeremeyev VA, Zubov LM (1999) The theory of elastic and viscoelastic micropolar liquids. Journal of Applied Mathematics and Mechanics 63(5):755–767

    Google Scholar 

  • Yildizdag ME, Demirtas M, Ergin A (2018) Multipatch discontinuous Galerkin isogeometric analysis of composite laminates. Continuum Mechanics and Thermodynamics pp 1–14, https://doi.org/10.1007/s00161-018-0696-9

  • Yildizdag ME, Ardic IT, Demirtas M, Ergin A (2019) Hydroelastic vibration analysis of plates partially submerged in fluid with an isogeometric FE-BE approach. Ocean Engineering 172:316– 329

    Google Scholar 

  • Yoo A, Jasiuk I (2006) Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network. Journal of Biomechanics 39(12):2241–2252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Giorgio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giorgio, I., Andreaus, U., Alzahrani, F., Hayat, T., Lekszycki, T. (2019). A Diffusion Model for Stimulus Propagation in Remodeling Bone Tissues. In: Altenbach, H., Müller, W., Abali, B. (eds) Higher Gradient Materials and Related Generalized Continua. Advanced Structured Materials, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-030-30406-5_5

Download citation

Publish with us

Policies and ethics