Skip to main content

Photonic Local Density of States

  • Chapter
  • First Online:
Nano and Quantum Optics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3666 Accesses

Abstract

In this chapter we investigate the coupling of quantum emitters and other local probes to plasmonic nanoparticles. We shall find it convenient to introduce the concept of a photonic local density of states (LDOS), which is a measure of how efficiently an oscillator transfers energy to its environment. In later parts of this chapter we will also discuss surface-enhanced Raman spectroscopy (SERS) and electron energy loss spectroscopy (EELS), which play important roles in the fields of nano optics and plasmonics. This chapter combines many of the concepts introduced in previous chapters, including Green’s functions, stratified media, and particle plasmons. Our analysis will be based on the framework of classical electrodynamics, but we will show in later parts of this book that the results only need to be slightly adapted to account for quantum effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Initially I thought that the breakthrough was only possible with the new generation of electron microscopes, but as Mathieu Kociak, one of the authors of these papers, explains this is not correct: “Actually, both [electron microscopes] were already extremely old (VG machines, 35 years old at that time!). The key in both work was data processing (PCA for Michel, deconvolution for us). Then only the works were reproduced with new generations of microscopes, which, indeed, unleashed the EELS-plasmonic beast.”

References

  1. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

  2. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  3. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  4. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders, Fort Worth, 1976)

    MATH  Google Scholar 

  5. E.M. Purcell, H.C. Torry, R.V. Pound, Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37 (1946)

    Article  ADS  Google Scholar 

  6. R. Carminati, J.J. Greffet, C. Henkel, J.M. Vigoureux, Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle. Opt. Commun. 216, 368 (2006)

    Article  ADS  Google Scholar 

  7. P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)

    Article  ADS  Google Scholar 

  8. A. Hörl, G. Haberfehlner, A. Trügler, F. Schmidt, U. Hohenester, G. Kothleitner, Tomographic reconstruction of the photonic environment of plasmonic nanoparticles. Nat. Commun. 8, 37 (2017)

    Article  ADS  Google Scholar 

  9. K. Joulain, R. Carminati, J.-P. Mulet, J.-J. Greffet, Definition and measurement of the local density of electromagnetic states close to an interface. Phys. Rev. B 68, 245405 (2003)

    Article  ADS  Google Scholar 

  10. K.H. Drexhage, Influence of a dielectric interface on fluorescence decay time. J. Lumin. 12, 693 (1970)

    Article  Google Scholar 

  11. R.R. Chance, A. Prock, R. Silbey, Molecular Fluorescence and Energy Transfer Near Interface, vol. 37 (Wiley, New York, 1978).

    Google Scholar 

  12. E.C. Le Ru, P.G. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy (Elsevier, Amsterdam, 2009)

    Google Scholar 

  13. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface enhanced raman scattering. Science 275, 1102 (1997)

    Article  Google Scholar 

  14. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163 (1974)

    Article  ADS  Google Scholar 

  15. K. Kneipp, M. Moskovits, M. Kneipp (eds.), Surface Enhanced Raman Scattering (Springer, Berlin, 2008)

    Google Scholar 

  16. T. Förster, Energiewanderung und Fluoreszenz. Naturwissenschaften 33, 166 (1946)

    Article  ADS  Google Scholar 

  17. P. Andrew, W.L. Barnes, Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306, 1002 (2004)

    Article  ADS  Google Scholar 

  18. J.I. Gersten, A. Nitzan, Accelerated energy transfer between molecules near a solid particle. Chem. Phys. Lett. 104, 31 (1984)

    Article  ADS  Google Scholar 

  19. C. Cherqui, N. Thakkar, G. Li, J.P. Camden, D.J. Masiello, Characterizing localized surface plasmons using electron energy-loss spectroscopy. Annu. Rev. Phys. Chem. 67, 331 (2015)

    Article  ADS  Google Scholar 

  20. C.J. Powell, J.B. Swan, Origin of the characteristic electron energy losses in aluminum. Phys. Rev. 115, 869 (1959)

    Article  ADS  Google Scholar 

  21. M. Bosman, V.J. Keast, M. Watanabe, A.I. Maaroof, M.B. Cortie, Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007)

    Article  ADS  Google Scholar 

  22. J. Nelayah, M. Kociak, O. Stephan, F.J. García de Abajo, M. Tence, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Martin, C. Colliex, Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348 (2007)

    Article  Google Scholar 

  23. F.J. García de Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209 (2010)

    Article  ADS  Google Scholar 

  24. C. Colliex, M. Kociak, O. Stephan, Electron energy loss spectroscopy imaging of surface plasmons at the nanoscale. Ultramicroscopy 162, A1 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hohenester, U. (2020). Photonic Local Density of States. In: Nano and Quantum Optics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-30504-8_10

Download citation

Publish with us

Policies and ethics