Skip to main content

Hand Movement Detection from Surface Electromyography Signals by Machine Learning Techniques

  • Conference paper
  • First Online:
VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering (CLAIB 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 75))

Included in the following conference series:

Abstract

Surface electromyography (sEMG) signals offer information on the natural control of muscle contraction but struggle to identify temporal pattern parameters for several degrees of motion of voluntary hand movements. The complex nature of these signals renders the movement prediction task difficult; therefore, feature extraction and selection algorithms are a natural choice to transform time domain data into a new space domain to enhance recognition. The purpose of this work was to conduct an analysis of a former forearm sEMG database to improve a model to classify 15 defined hand movements. A simpler classification model was created from algorithms, such as naive Bayes (NB), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA). Also, novel preprocessing of the EMG signal data was employed and modeled the movement in virtual simulation software. In the preprocessing, outliers were eliminated, and a scatter matrix algorithm was used to transform the data into a new space to increase the differentiation between distinct classes. The processing window was 62.5 ms to generate a classification and integrate one video frame movement. Experiments yielded promising results, achieving a 93.76% recognition rate in an independent test set. The biomechanical wrist model available in OpenSim was completed by adding the missing degrees of freedom of the fingers to simulate the movement generated from the proposed classification model. The sequence of movement was converted to a biomechanical model and constructed into a video object with the potential for real time use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Y., Ning, Y., He, J., Li, S., Zhou, P., Zhang, Y.: Internal muscle activity imaging from multi-channel surface EMG recordings: a validation study. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, pp. 3559–3561 (2014)

    Google Scholar 

  2. Sun, Y., Li, C., Li, G., Jiang, G., Jiang, D., Liu, H., Zheng, Z., Shu, W.: Gesture recognition based on kinect and sEMG signal fusion. Mob. Netw. Appl. 23(4), 797–805 (2018)

    Article  Google Scholar 

  3. Wahid, M.F., Tafreshi, R., Al-Sowaidi, M., Langari, R.: Subject-independent hand gesture recognition using normalization and machine learning algorithms. J. Comput. Sci. 27, 69–76 (2018)

    Article  Google Scholar 

  4. He, J., Sheng, X., Zhu, X., Jiang, C., Jiang, N.: Spatial information enhances myoelectric control performance with only two channels. IEEE Trans. Industr. Inf. PP(c), 1 (2018)

    Google Scholar 

  5. Saikia, A., Kakoty, N.M., Phuka, N., Balakrisxnan, M., Sahai, N., Paul, S., Bhatia, D.: Combination of EMG features and stability index for finger movements recognition. Proc. Comput. Sci. 133, 92–98 (2018)

    Article  Google Scholar 

  6. Resnik, L., Huang, H.H., Winslow, A., Crouch, D.L., Zhang, F., Wolk, N.: Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. J. NeuroEng. Rehabil. 15(1), 113 (2018)

    Article  Google Scholar 

  7. Feng, N., Shi, Q., Wang, H., Gong, J., Liu, C., Lu, Z.: A soft robotic hand: design, analysis, sEMG control, and experiment. Int. J. Adv. Manuf. Technol. 97(1–4), 319–333 (2018)

    Article  Google Scholar 

  8. Menegaldo, L.L.: Real-time muscle state estimation from EMG signals during isometric contractions using Kalman filters. Biol. Cybern. 111(5–6), 335–346 (2017)

    Article  MathSciNet  Google Scholar 

  9. Kim, M., Chung, W.K.: Spatial sEMG pattern-based finger motion estimation in a small area using a microneedle-based high-density interface. IEEE Robot. Autom. Lett. 3(1), 234–241 (2017)

    Article  Google Scholar 

  10. Sheibani, A., Pourmina, M.A.: Study and analysis of EMG signal and its application in controlling the movement of a prosthetic limb. Health Technol. 6(4), 277–284 (2016)

    Article  Google Scholar 

  11. Paleari, M., Di Girolamo, M., Celadon, N., Favetto, A., Ariano, P.: On optimal electrode conguration to estimate hand movements from forearm surface electromyography. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015, pp. 6086–6089 (2015)

    Google Scholar 

  12. Castro, M.C., Arjunan, S.P., Kumar, D.K.: Selection of suitable hand gestures for reliable myoelectric human computer interface. BioMed. Eng. Online 14(1), 111 (2015)

    Article  Google Scholar 

  13. Kumar, D.K., Arjunan, S.P., Singh, V.P.: Towards identification of finger flexions using single channel surface electromyography – able bodied and amputee subjects. J. NeuroEng. Rehabil. 10(1), 17 (2013)

    Article  Google Scholar 

  14. Jeong, E.C., Kim, S.J., Song, Y.R., Lee, S.M.: Comparison of wrist motion classification methods using surface electromyogram. J. Cent. South Univ. 20(4), 960–968 (2013)

    Article  Google Scholar 

  15. Daley, H., Englehart, K., Hargrove, L., Kuruganti, U.: High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control. J. Electromyogr. Kinesiol. 22(3), 478–484 (2012)

    Article  Google Scholar 

  16. Dennis, T., He, H., Todd, K.: Study of stability of time-domain features for electromyographic pattern recognition. J. NeuroEng. Rehabil. 7, 21 (2010)

    Article  Google Scholar 

  17. Arjunan, S.P., Kumar, D.K.: Decoding subtle forearm exions using fractal features of surface electromyogram from single and multiple sensors. J. NeuroEng. Rehabil. 7(1), 110 (2010)

    Article  Google Scholar 

  18. Walbran, S.H., Calius, E.P., Dunlop, G.R., Anderson, I.A.: A technique for optimizing electrode placement for electromyographic control of prostheses. In: Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, pp. 1331–1334 (2009)

    Google Scholar 

  19. Ryait, H.S., Arora, A.S., Agarwal, R.: Study of issues in the development of surface EMG controlled human hand. J. Mater. Sci. Mater. Med. 20(Suppl. 1), 107 (2009)

    Article  Google Scholar 

  20. Smith, R.J., Tenore, F., Huberdeau, D., Cummings, R.E., Thakor, N.V.: Continuous decoding of nger position from surface EMG signals for the control of powered prostheses. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 197–200 (2008)

    Google Scholar 

  21. Christov, I., Raikova, R., Angelova, S.: Separation of electrocardiographic from electromyographic signals using dynamic ltration. Med. Eng. Phys. 57, 110 (2018)

    Article  Google Scholar 

  22. Veer, K.: A flexible approach for segregating physiological signals. Meas. J. Int. Meas. Confed. 87, 21–26 (2016)

    Article  Google Scholar 

  23. Willigenburg, N.W., Daertshofer, A., Kingma, I., van Dieën, J.H.: Removing ECG contamination from EMG recordings: a comparison of ICA-based and other filtering procedures. J. Electromyogr. Kinesiol. 22(3), 485–493 (2012)

    Article  Google Scholar 

  24. Marque, C., Bisch, C., Dantas, R., Elayoubi, S., Brosse, V., Pérot, C.: Adaptive filtering for ECG rejection from surface EMG recordings. J. Electromyogr. Kinesiol. 15(3), 310–315 (2005)

    Article  Google Scholar 

  25. Kumar, D.K., Melaku, A.: Electrode distance and magnitude of SEMG. In: Proceedings of the Second Joint Engineering in Medicine and Biology, 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, vol. 3, pp. 2477–2480 (2002)

    Google Scholar 

  26. Baratta, R.V., Solomonow, M., Zhou, B.H., Zhu, M.: Methods to reduce the variability of EMG power spectrum estimates. J. Electromyogr. Kinesiol. 8(5), 279–285 (1998)

    Article  Google Scholar 

  27. Repository of Dr. Rmi N. Khushaba online. http://www.rami-khushaba.com/electromyogram-emg-repository.html

  28. Khushaba, R.N., Kodagoda, S.: Electromyogram (EMG) feature reduction using mutual components analysis for multifunction prosthetic fingers control, pp. 1534–1539. IEEE, December 2012 https://doi.org/10.1109/icarcv.2012.6485374

  29. Lei, M., Wang, Z., Feng, Z.: Detecting nonlinearity of action surface EMG signal. Phys. Lett. Sect. A: Gener. Atom. Solid State Phys. 290(5–6), 297–303 (2001). https://doi.org/10.1016/s0375-9601(01)00668-5

    Article  MATH  Google Scholar 

  30. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 6(8), 7420–7431 (2012). https://doi.org/10.1016/j.eswa.2012.01.102

    Article  Google Scholar 

  31. Havlik, J., Uhlir, J., Horcik, Z.: Comparison of k-means and bayes classifiers for human body motions classification. In: IFMBE Proceedings. FEE CTU (2009)

    Google Scholar 

  32. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936)

    Article  Google Scholar 

  33. Gutierrez-Osuna, R.: CSCE 666 Pattern Analysis—CSE@TAMU. http://courses.cs.tamu.edu/rgutier/csce666 f13/

  34. Lisboa, P.J.G., Ellis, I.O.: Cluster-based visualisation with scatter matrices. Pattern Recogn. Lett. 29, 1814–1823 (2008)

    Article  Google Scholar 

  35. Seth, A., Habib, A.: SimTK Opensim, National Institutes of Health (NIH). https://simtk.org/projects/opensim

  36. Oskoei, M.A., Hu, H.: Myoelectric control systems - to survey. Biomed. Signal Process. Control 2(4), 275–294 (2007). https://doi.org/10.1016/j.bspc.2007.07.009

    Article  Google Scholar 

  37. Amezquita-Garcia, J.A., Bravo-Zanoguera, M.E.: Bioingenieria, UABC. https://simtk.org/projects/moving-fingers

  38. Gonzalez, R.V., Buchanan, T.S., Delp, S.L.: How muscle architecture and moment arms affect wrist flexion-extension moments. J. Biomech. 30, 705–712 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Enrique Bravo-Zanoguera .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amezquita-Garcia, J.A., Bravo-Zanoguera, M.E., González-Navarro, F.F., Lopez-Avitia, R. (2020). Hand Movement Detection from Surface Electromyography Signals by Machine Learning Techniques. In: González Díaz, C., et al. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering. CLAIB 2019. IFMBE Proceedings, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-30648-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30648-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30647-2

  • Online ISBN: 978-3-030-30648-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics