Skip to main content

Landscapes of Marine Energy: An Overview

  • Conference paper
  • First Online:
INCREaSE 2019 (INCREaSE 2019)

Abstract

Renewable marine energy can be an important contributor to achieving the goal of CO2 reduction for 2050 established by the Kyoto protocol. However, the infrastructures that exploit renewable energy sources have a spatial impact on marine landscapes that must be taken into consideration. This impact determines public perception of renewable energy projects. This study analyses relevant case studies of marine energy infrastructure that have dealt with this impact from different disciplines. The objective of this work is to create an inventory of spatial solutions to the impacts generated in marine landscapes. This catalogue will be a useful tool for decision-making when facing a multidisciplinary process of marine spatial planning related with energy production. In order to be validated, the inventory must achieve the following goals: (i) encouraging multidisciplinary processes of comparison, (ii) enabling Research by design methodology (iii) addressing integration in landscape, (iv) awareness of socioeconomic and cultural values and (v) including data-informed results. Two impacts related to the field of landscape architecture in each collected sample have been considered relevant for this catalogue: visual impact and spatial footprint. Formal features and numerical indicators visually describe these impacts, as well as the innovative strategies that these projects propose to deal with them. These features are: element configuration (“anatomy”), stability systems and dynamic systems. They are represented by synthetic drawings. The chosen indicators are: energy output, distance to shoreline, sea depth, area of device, and height of device. These are included in a radial chart. In addition, a label with basic identification data has been attached to each sample. The quantitative information in the catalogue makes the different projects comparable, while the graphic representation give a qualitative point of view about the spatial consequences of this data. Both are necessary to promote future multidisciplinary marine energy projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apostol, D., Palmer, J., Pasqualetti, M., Smardon, R., Sullivan, R.: The Renewable Energy Landscape: Preserving Scenic Values in our Sustainable Future, New York (2016)

    Google Scholar 

  2. UNFCCC: Kyoto Protocol To the United Nations Framework Kyoto Protocol To the United Nations Framework. Rev. Eur. Community Int. Environ. Law (1998)

    Google Scholar 

  3. Pasqualetti, M., Stremke, S.: Energy landscapes in a crowded world: a first typology of origins and expressions. Energy Res. Soc. Sci. 36, 94–105 (2018)

    Article  Google Scholar 

  4. Mork, G., Barstow, S., Kabuth, A., Pontes, M.T.: Assessing the global wave energy potential. In: 29th International Conference on Ocean, Offshore and Arctic Engineering, vol. 3 (2010)

    Google Scholar 

  5. Blunden, L.S., Bahaj, A.S.: Tidal energy resource assessment for tidal stream generators. Proc. Inst. Mech. Eng. Part A J. Power Energy. 221, 137–146 (2007)

    Google Scholar 

  6. Ghosn, R.: Landscapes of energy. New Geographies 02. MA. Harvard University Press, Cambridge (2010)

    Google Scholar 

  7. Ivancic, A.: Energyscapes. Gustavo Gili, Barcelona (2010)

    Google Scholar 

  8. Sijmons, D., Hugtenburg, J., Hoorn, A., van, Feddes, F.: Landscape and Energy: Designing Transition. nai010 Publishers, Rotterdam (2014)

    Google Scholar 

  9. Trapani, K., Millar, D.L.: Proposing offshore photovoltaic (PV) technology to the energy mix of the Maltese islands. Energy Convers. Manag. 67, 18–26 (2013)

    Article  Google Scholar 

  10. Fernand, F., Israel, A., Skjermo, J., Wichard, T., Timmermans, K.R., Golberg, A.: Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges. Renew. Sustain. Energy Rev. 75, 35–45 (2017)

    Article  Google Scholar 

  11. European Commission: Ocean Energy: Technology Information Sheet (2014)

    Google Scholar 

  12. Neill, S.P., Hashemi, M.R.: Chapter 3 - tidal energy. In: Fundamentals of Ocean Renewable Energy, pp. 47–81. Academic Press (2018)

    Google Scholar 

  13. Bedard, R., Jacobson, P., Previsic, M., Musial, W., Varley, R.: An overview of ocean renewable energy technologies. Oceanography 23, 22–31 (2010)

    Article  Google Scholar 

  14. Adil, A.M., Ko, Y.: Socio-technical evolution of decentralized energy systems: a critical review and implications for urban planning and policy. Renew. Sustain. Energy Rev. 57, 1025–1037 (2016)

    Article  Google Scholar 

  15. Dalton, G., Bardócz, T., Blanch, M., Campbell, D., Johnson, K., Lawrence, G., Lilas, T., Friis-Madsen, E., Neumann, F., Nikitas, N., Ortega, S.T., Pletsas, D., Simal, P.D., Sørensen, H.C., Stefanakou, A., Masters, I.: Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies. Renew. Sustain. Energy Rev. 107, 338–359 (2019)

    Article  Google Scholar 

  16. West, J., Bailey, I., Winter, M.: Renewable energy policy and public perceptions of renewable energy: a cultural theory approach. Energy Policy. 38, 5739–5748 (2010)

    Article  Google Scholar 

  17. Cassatella, C.: Assessing visual and social perceptions social perception of landscape. In: Landscape Indicators, pp. 105–140. Springer, Netherlands (2011)

    Chapter  Google Scholar 

  18. Smits, M.: Taming monsters: the cultural domestication of new technology. Technol. Soc. 28, 489–504 (2006)

    Article  Google Scholar 

  19. Daglio, L., Ginelli, E.: The architecture of energy systems between technological innovation and environment. City, Territ. Archit. 5, 12 (2018)

    Google Scholar 

  20. de Waal, R., Stremke, S., van Hoorn, A., Duchhart, I., van den Brink, A.: Incorporating renewable energy science in regional landscape design: results from a Competition in The Netherlands. Sustainability 7, 4806–4828 (2015)

    Article  Google Scholar 

  21. Sijmons, D., van Dorst, M.: Strong feelings: Emotional landscape of wind turbines. In: Sustainable Energy Landscapes: Designing, Planning, and Development (2012)

    Chapter  Google Scholar 

  22. Walker, G., Cass, N.: Carbon reduction, ‘the public’ and renewable energy: engaging with socio-technical configurations. Area 39, 458–469 (2007)

    Article  Google Scholar 

  23. Schupp, M.F., Bocci, M., Depellegrin, D., Kafas, A., Kyriazi, Z., Lukic, I., Schultz-Zehden, A., Krause, G., Onyango, V., Buck, B.H.: Toward a common understanding of ocean multi-use. Front. Mar. Sci. 6, 165 (2019)

    Article  Google Scholar 

  24. Johnson, K., Kerr, S., Side, J.: Marine renewables and coastal communities—experiences from the offshore oil industry in the 1970s and their relevance to marine renewables in the 2010s. Mar. Policy. 38, 491–499 (2013)

    Article  Google Scholar 

  25. Ladenburg, J., Dubgaard, A.: Preferences of coastal zone user groups regarding the siting of offshore wind farms. Ocean Coast. Manag. 52, 233–242 (2009)

    Article  Google Scholar 

  26. Bell, D., Gray, T., Haggett, C., Swaffield, J.: Re-visiting the ‘social gap’: public opinion and relations of power in the local politics of wind energy. Env. Polit. 22, 115–135 (2013)

    Article  Google Scholar 

  27. Symonds, P., Symonds, P.M.: The case study as a research method. In: Case Studies, p. 15. SAGE Publications Ltd, 1 Oliver’s Yard, 55 City Road, London, EC1Y 1SP, United Kingdom

    Google Scholar 

  28. Falcão, A.F.O.: Modelling of Wave Energy Conversion (2014)

    Google Scholar 

  29. Marques, T.P.: Integration of Infrastructures in Landscape – An Opportunity to Landscape Planning Improvement

    Google Scholar 

  30. Maher, R., Maher, M., Mann, S., McAlpine, C.A.: Integrating design thinking with sustainability science: a research through design approach. Sustain. Sci. 13, 1565–1587 (2018)

    Article  Google Scholar 

  31. Lam, J.C.K., Walker, R.M., Hills, P.: Interdisciplinarity in sustainability studies: a review. Sustain. Dev. 22, 158–176 (2014)

    Article  Google Scholar 

  32. Energy Information and Data. OpenEI.org. https://openei.org/wiki/Main_Page. Accessed 14 May 2019

  33. Sullivan, R.G., Kirchler, L.B., Cothren, J., Winters, S.L.: Offshore Wind Turbine Visibility and Visual Impact Threshold Distances Offshore Wind Turbine Visibility 1 (2013)

    Google Scholar 

  34. Diendorfer, C., Haider, M., Lauermann, M.: Performance analysis of offshore solar power plants. Energy Procedia 49, 2462–2471 (2014)

    Article  Google Scholar 

  35. Buongiorno, J., Jurewicz, J., Golay, M., Todreas, N.: The Offshore Floating Nuclear Plant Concept. Nucl. Technol. 194, 1–14 (2016)

    Article  Google Scholar 

  36. The Pipe: LAGI-2016, http://landartgenerator.org/LAGI-2016/alpi1919/. Accessed 04 May 2019

  37. thewhyfactory, https://thewhyfactory.com/. Accessed 04 May 2019

  38. Yum, K.D.: Tide and tidal current energy development in Korea. Asian and Pacific Coasts (2007)

    Google Scholar 

  39. Wang, Z.L., Jiang, T., Xu, L.: Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017)

    Article  Google Scholar 

  40. Traversée de la baie de Cadix par une ligne électrique à 132 kV. https://structurae.net/literature/journal-article/traversee-de-la-baie-de-cadix-par-une-ligne-electrique-a-132kv. Accessed 04 May 2019

  41. Waterstudio.NL Architecture, urban planning and research. https://www.waterstudio.nl/. Accessed 04 May 2019

  42. Fagiano, L., Milanese, M.: Airborne wind energy: an overview. In: 2012 American Control Conference (ACC), pp. 3132–3143. IEEE (2012)

    Google Scholar 

  43. VanZwieten, J.H., Rauchenstein, L.T., Lee, L.: An assessment of Florida’s ocean thermal energy conversion (OTEC) resource. Renew. Sustain. Energy Rev. 75, 683–691 (2017)

    Article  Google Scholar 

  44. Khairallah, C., Eid, E., Rahme, P., Mosleh, C.B.: Analysis of a wave roller energy-harvesting device. In: 2016 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), pp. 32–36. IEEE (2016)

    Google Scholar 

  45. Parsa, K., Mekhiche, M., Sarokhan, J., Stewart, D.: Performance of OPT’s commercial PB3 PowerBuoyTM during 2016 ocean deployment and comparison to projected model results. In: Volume 10: Ocean Renewable Energy, p. V010T09A021. ASME (2017)

    Google Scholar 

  46. Ulvin, J.B., Molinas, M., Sjolte, J.: Analysis of the power extraction capability for the wave energy converter BOLT®. Energy Procedia 20, 156–169 (2012)

    Article  Google Scholar 

  47. Mann, L.D.: Application of ocean observations & analysis: the CETO wave energy project. In: Operational Oceanography in the 21st Century. pp. 721–729. Springer Netherlands (2011)

    Google Scholar 

  48. BartBratke. http://bartbratke.com/. Accessed 04 May 2019

  49. Becker Architekten. http://www.becker-architekten.net/. Accessed 04 May 2019

  50. bound4blue. http://bound4blue.com/. Accessed 04 May 2019

  51. Klar, R., Steidl, B., Sant, T., Aufleger, M., Farrugia, R.N.: Buoyant Energy—balancing wind power and other renewables in Europe’s oceans. J. Energy Storage 14, 246–255 (2017)

    Article  Google Scholar 

  52. Lei, R., Zhai, H., Nie, J., Zhong, W., Bai, Y., Liang, X., Xu, L., Jiang, T., Chen, X., Wang, Z.L.: Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 4, 1800514 (2019)

    Article  Google Scholar 

  53. Cetacea: LAGI-2016. https://landartgenerator.org/LAGI-2016/pl4nkt0n/. Accessed 04 May 2019

  54. Civilization 0.000: Floating Power Station- eVolo: Architecture Magazine. http://www.evolo.us/civilization-0-000-floating-power-station/. Accessed 04 May 2019

  55. Hicks, D.C., Mitcheson, G.R., Pleass, C.M., Salevan, J.F.: Delbouy: Ocean wave-powered seawater reverse osmosis desalination systems. Desalination 73, 81–94 (1989)

    Article  Google Scholar 

  56. Kofoed, J.P., Frigaard, P., Friis-Madsen, E., Sørensen, H.C.: Prototype testing of the wave energy converter wave dragon. Renew. Energy 31, 181–189 (2006)

    Article  Google Scholar 

  57. Dounreay Tri – Hexicon. https://www.hexicon.eu/dounreay-tri/#menu. Accessed 04 May 2019

  58. Moreno, C.D., García Grinda, E.: Energy Forms. What impact does an energy-driven architecture have on form? John Wiley & Sons Ltd. (2009)

    Google Scholar 

  59. Alamian, R., Shafaghat, R., Miri, S.J., Yazdanshenas, N., Shakeri, M.: Evaluation of technologies for harvesting wave energy in Caspian Sea. Renew. Sustain. Energy Rev. 32, 468–476 (2014)

    Article  Google Scholar 

  60. Houser, D., Klinke, J., Lovejoy, M.: FINAL REPORT-Ocean Motion International WavePump Performance Test Summary report of Single OMI WavePump Performance Testing Prepared by On behalf of Oregon Wave Energy Trust (2013)

    Google Scholar 

  61. Vakis, A.I., Meijer, H., Prins, W.A.: First steps in the design and construction of the Ocean Grazer ESDA 2014–2018 (2014)

    Google Scholar 

  62. Kim, D.Y., Kim, H.S., Kong, D.S., Choi, M., Kim, H.B., Lee, J.-H., Murillo, G., Lee, M., Kim, S.S., Jung, J.H.: Floating buoy-based triboelectric nanogenerator for an effective vibrational energy harvesting from irregular and random water waves in wild sea. Nano Energy. 45, 247–254 (2018)

    Article  Google Scholar 

  63. Patel, S.: Floating solar-on water

    Google Scholar 

  64. Heliofloat. https://www.heliofloat.com/. Accessed 04 May 2019

  65. Chakrabarti, S., Halkyard, J., Capanoglu, C.: Historical development of offshore structures. In: Chakrabarti, S. (ed.) Handbook of Offshore Engineering, pp. 138. Elsevier, London (2005)

    Google Scholar 

  66. Iland. Multifunctional island. https://www.iland-energystorage.be/. Accessed 04 May 2019

  67. RAFAA. http://www.rafaa.ch/rafaa/news.html. Accessed 04 May 2019

  68. Gholami, M.: Islanding Detection Method of Distributed Generation Based on Wavenet. Int. J. Eng. 32, 242–248 (2019)

    Google Scholar 

  69. Ē ando Yū (Firm), エーアンドユー (Firm): Kenchiku to toshi = Architecture and urbanism : A + U. Kabushiki Kaisha Ē ando Yū (1971)

    Google Scholar 

  70. Kyocera Group Global Site. https://global.kyocera.com/. Accessed 18 Apr 2019

  71. Bae, Y.H., Kim, K.O., Choi, B.H.: Lake Sihwa tidal power plant project. Ocean Eng. 37, 454–463 (2010)

    Article  Google Scholar 

  72. Fredriksson, S., Broström, G., Jansson, M., Nilsson, H., Bergqvist, B.: Large eddy simulation of the tidal power plant deep green using the actuator line method. IOP Conf. Ser. Mater. Sci. Eng. 276, 12014 (2017)

    Article  Google Scholar 

  73. mcdowellespinosa. http://mcdowellespinosa.squarespace.com/. Accessed 04 May 2019

  74. Torre-Enciso, Y., Ortubia, I., López De Aguileta, L.I., Marqués, J.: Mutriku Wave Power Plant: from the thinking out to the reality. In: Proceedings of the 8th European Wave Tidal Energy Conference, pp. 319–329 (2009)

    Google Scholar 

  75. Najjar & Najjar Architects. http://www.najjar-najjar.com/. Accessed 04 May 2019

  76. Technical report on Design and Execution of Desalination Plants in Minicoy and Agatti, UT Lakshadweep. https://www.niot.res.in/img/Island_Desalination_Technical_Report.pdf. Accessed 04 May 2019

  77. Andre, H.: Ten years of experience at the “La Rance” tidal power plant. Ocean Manag. 4, 165–178 (1978)

    Article  Google Scholar 

  78. Ryan, S., Algie, C., Macfarlane, G.J., Fleming, A.N., Penesis, I., King, A.: The Bombora wave energy converter : a novel multi-purpose device for electricity, coastal protection and surf breaks. Coast Ports 2015 (2015)

    Google Scholar 

  79. The Clear Orb: LAGI-2016. https://landartgenerator.org/LAGI-2016/hbgds515/. Accessed 04 May 2019

  80. The Ephemeral Machine: LAGI-2014. https://landartgenerator.org/LAGI-2014/10222617/. Accessed 18 Apr 2019

  81. Stremke, S., Koh, J.: Ecological concepts and strategies with relevance to energy-conscious spatial planning and design. Environ. Plan. B Plan. Des. 37, 518–532 (2010)

    Article  Google Scholar 

  82. van der Schoor, T., Scholtens, B.: Power to the people: Local community initiatives and the transition to sustainable energy. Renew. Sustain. Energy Rev. 43, 666–675 (2015)

    Article  Google Scholar 

  83. van Zalk, J., Behrens, P.: The spatial extent of renewable and non-renewable power generation: a review and meta-analysis of power densities and their application in the U.S. Energy Policy. 123, 83–91 (2018)

    Article  Google Scholar 

  84. Sunengy Pty Ltd Liquid Solar Array. http://sunengy.com/. Accessed 20 June 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cueto-Mondejar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cueto-Mondejar, D., Castellano-Pulido, F.J., García-Píriz, T. (2020). Landscapes of Marine Energy: An Overview. In: Monteiro, J., et al. INCREaSE 2019. INCREaSE 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-30938-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30938-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30937-4

  • Online ISBN: 978-3-030-30938-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics