Skip to main content

Response of Sandwich Structures to Blast Loads

  • Chapter
  • First Online:
Advances in Thick Section Composite and Sandwich Structures

Abstract

We first review works on characterizing loads produced by underwater and in-air explosions/blasts. We then summarize the work of Batra’s group on studying transient deformations of doubly-curved sandwich structures by using a third-order shear and normal deformable theory. For a given areal mass density we find structural designs that maximize the first failure load and then ascertain their ultimate failure loads by progressively degrading the material moduli. Subsequently, we briefly outline the work on fluid-structure interaction related to water slamming for deformable hulls and high-speed viscous flows interacting with rigid solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cullis I (2001) Blast waves and how they interact with structures. J R Army Med Corps 147(1):16–26

    Article  CAS  Google Scholar 

  2. Keil A (1961) The response of ships to underwater explosions. David Taylor Model Basin, Washington

    Book  Google Scholar 

  3. Rayleigh L (1917) VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dubl Phil Mag & J Sci 34(200):94–98

    Article  Google Scholar 

  4. Cole RH, Weller R (1948) Underwater explosions. Phys Today 1:35

    Article  Google Scholar 

  5. Taylor G (1963) The pressure and impulse of submarine explosion waves on plates, The scientific papers of GI Taylor 3:287–303

    Google Scholar 

  6. Rajendran R, Narasimhan K (2006) Deformation and fracture behaviour of plate specimens subjected to underwater explosion—a review. Int J Impact Eng 32(12):1945–1963

    Article  Google Scholar 

  7. Reid W (1996) The response of surface ships to underwater explosions, department of defence. Defence Science and Technology Organisation, Melbourne

    Google Scholar 

  8. Shin Y (1996) Naval ship shock and design analysis. Course notes for underwater shock analysis, Naval Postgraduate School, Monterey 87

    Google Scholar 

  9. Snay HG (1957) Hydrodynamics of underwater explosions. In symposium on naval hydrodynamics

    Google Scholar 

  10. Costanzo FA, Gordon JD (1980) An analysis of bulk cavitation in deep water, DTNSRDC, UERD Report

    Google Scholar 

  11. Nurick G, Martin J (1989) Deformation of thin plates subjected to impulsive loading—a review Part 1: Theoretical considerations. Int J Impact Eng 8(2):159–170

    Article  Google Scholar 

  12. Nurick G, Martin J (1989) Deformation of thin plates subjected to impulsive loading—a review part II: experimental studies. Int J Impact Eng 8(2):171–186

    Article  Google Scholar 

  13. Wierzbicki T, Nurick G (1996) Large deformation of thin plates under localised impulsive loading. Int J Impact Eng 18(7–8):899–918

    Article  Google Scholar 

  14. Rajendran R, Narasimhan K (2001) Damage prediction of clamped circular plates subjected to contact underwater explosion. Int J Impact Eng 25(4):373–386

    Article  Google Scholar 

  15. Rajendran R, Lee J (2009) Blast loaded plates. Mar Struct 22(2):99–127

    Article  Google Scholar 

  16. Kennard E (1994) The effect of a pressure wave on a plate or a diaphragm. David Taylor Model Basin, Washington

    Google Scholar 

  17. Fleck N, Deshpande V (2004) The resistance of clamped sandwich beams to shock loading. J Appl Mech 71(3):386–401

    Article  Google Scholar 

  18. Liu Z, Young YL (2008) Transient response of submerged plates subject to underwater shock loading: an analytical perspective. J Appl Mech 75(4):044504

    Article  Google Scholar 

  19. Mouritz A (1995) The damage to stitched GRP laminates by underwater explosion shock loading. Compos Sci Technol 55(4):365–374

    Article  Google Scholar 

  20. Mouritz A (1996) The effect of underwater explosion shock loading on the flexural properties of GRP laminates. Int J Impact Eng 18(2):129–139

    Article  Google Scholar 

  21. Wen H (2001) Penetration and perforation of thick FRP laminates. Compos Sci Technol 61(8):1163–1172

    Article  Google Scholar 

  22. De Morais W, Monteiro S, d’Almeida J (2005) Effect of the laminate thickness on the composite strength to repeated low energy impacts. Compos Struct 70(2):223–228

    Article  Google Scholar 

  23. Gellert E, Cimpoeru S, Woodward R (2000) A study of the effect of target thickness on the ballistic perforation of glass-fibre-reinforced plastic composites. Int J Impact Eng 24(5):445–456

    Article  Google Scholar 

  24. Sierakowski RL, Chaturvedi SK (1997) Dynamic loading and characterization of fiber-reinforced composites, dynamic loading and characterization of fiber-reinforced composites, by Robert L, Sierakowski, Shive K, Chaturvedi, pp. 252. ISBN 0-471-13824-X. Wiley-VCH: pp 252

    Google Scholar 

  25. Sjögren B (2001) Static strength of CFRP laminates with embedded fiber-optic edge connectors. Compos Part A Appl Sci Manuf 32(2):189–196

    Article  Google Scholar 

  26. Fu S, Lauke B, Mäder E, Hu X, Yue C (1999) Fracture resistance of short-glass-fiber-reinforced and short-carbon-fiber-reinforced polypropylene under charpy impact load and its dependence on processing. J Mater Process Tech 89:501–507

    Article  Google Scholar 

  27. Espinosa H, Dwivedi S, Lu HC (2000) Modeling impact induced delamination of woven fiber reinforced composites with contact/cohesive laws. Comput Methods Appl Mech Eng 183(3–4):259–290

    Article  Google Scholar 

  28. Roy R, Sarkar B, Bose N (2001) Impact fatigue of glass fibre–vinylester resin composites. Compos Part A Appl Sci Manuf 32(6):871–876

    Article  Google Scholar 

  29. Mouritz AP, Gellert E, Burchill P, Challis K (2001) Review of advanced composite structures for naval ships and submarines. Compos Struct 53(1):21–42

    Article  Google Scholar 

  30. Xue Z, Hutchinson JW (2004) A comparative study of impulse-resistant metal sandwich plates. Int J Impact Eng 30(10):1283–1305

    Article  Google Scholar 

  31. Hutchinson JW, Xue Z (2005) Metal sandwich plates optimized for pressure impulses. Int J Mech Sci 47(4–5):545–569

    Article  Google Scholar 

  32. Liang Y, Spuskanyuk AV, Flores SE, Hayhurst DR, Hutchinson JW, McMeeking RM, Evans AG (2007) The response of metallic sandwich panels to water blast. J Appl Mech 74(1):81–99

    Article  Google Scholar 

  33. Xue Z, Hutchinson JW (2003) Preliminary assessment of sandwich plates subject to blast loads. Int J Mech Sci 45(4):687–705

    Article  Google Scholar 

  34. Xue Z, Hutchinson JW (2006) Crush dynamics of square honeycomb sandwich cores. Int J Numer Methods Eng 65(13):2221–2245

    Article  Google Scholar 

  35. Deshpande V, Fleck N (2005) One-dimensional response of sandwich plates to underwater shock loading. J Mech Phys Solids 53(11):2347–2383

    Article  CAS  Google Scholar 

  36. Qiu X, Deshpande V, Fleck N (2003) Finite element analysis of the dynamic response of clamped sandwich beams subject to shock loading. Eur J Mech A-Solid 22(6):801–814

    Article  Google Scholar 

  37. Rabczuk T, Samaniego E, Belytschko T (2007) Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction. Int J Impact Eng 34(2):163–177

    Article  Google Scholar 

  38. Godunov SK (1959) A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat Sb 89(3):271–306

    Google Scholar 

  39. Godunov SK, Zabrodin AV, Prokopov GP (1962) A computational scheme for two-dimensional non stationary problems of gas dynamics and calculation of the flow from a shock wave approaching a stationary state. USSR Comput Math & Math Phys 1(4):1187–1219

    Article  Google Scholar 

  40. Van Leer B (1979) Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. J Comput Phys 32(1):101–136

    Article  Google Scholar 

  41. Van Leer B, Woodward P (1979) The MUSCL code for compressible flow: philosophy and results. TICOM conference

    Google Scholar 

  42. Colella P (1985) A direct Eulerian MUSCL scheme for gas dynamics. SIAM J Sci Comput 6(1):104–117

    Article  Google Scholar 

  43. Wardlaw AB, Mair HU (1998) Spherical solutions of an underwater explosion bubble. Shock Vib 5(2):89–102

    Article  Google Scholar 

  44. Blake JR, Gibson D (1981) Growth and collapse of a vapour cavity near a free surface. J Fluid Mech 111:123–140

    Article  Google Scholar 

  45. Blake JR, Gibson D (1987) Cavitation bubbles near boundaries. Annu Rev Fluid Mech 19(1):99–123

    Article  Google Scholar 

  46. Geers TL, Hunter KS (2002) An integrated wave-effects model for an underwater explosion bubble. J Acoust Soc Am 111(4):1584–1601

    Article  Google Scholar 

  47. Hunter KS, Geers TL (2004) Pressure and velocity fields produced by an underwater explosion. J Acoust Soc Am 115(4):1483–1496

    Article  Google Scholar 

  48. Rajendran R, Satyanarayana K (1997) Interaction of finite amplitude acoustic waves with a plane plate. JASI 25:V5

    Google Scholar 

  49. Bleich H, Sandler IS (1968) Dynamic interaction between structures and bilinear fluids. Columbia University, New York

    Google Scholar 

  50. Bleich H, Sandler I (1970) Interaction between structures and bilinear fluids. Int J Solid Struct 6(5):617–639

    Article  Google Scholar 

  51. Geers TL (1971) Residual potential and approximate methods for three-dimensional fluid-structure interaction problems. J Acoust Soc Am 49(5B):1505–1510

    Article  Google Scholar 

  52. Geers TL (1978) Doubly asymptotic approximations for transient motions of submerged structures. J Acoust Soc Am 64(5):1500–1508

    Article  Google Scholar 

  53. Shin YS, Santiago LD (1998) Surface ship shock modeling and simulation: two-dimensional analysis. Shock Vib 5(2):129–137

    Article  Google Scholar 

  54. DeRuntz J, Geers T, Felippa C (1980) The underwater shock analysis code (USA-version 3): a reference manual. Lockheed Missiles and Space Co Inc, Palo Alto

    Google Scholar 

  55. DeRuntz Jr, JA, Rankin C (1989) Applications of the USA-STAGS-CFA code to nonlinear fluid-structure interaction problems in underwater shock of submerged structures, In Proceedings of the 60th shock and vibration symposium

    Google Scholar 

  56. Felippa C, DeRuntz J (1984) Finite element analysis of shock-induced hull cavitation. Comput Methods Appl Mech Eng 44(3):297–337

    Article  Google Scholar 

  57. Shin YS (2004) Ship shock modeling and simulation for far-field underwater explosion. Comput Struct 82(23–26):2211–2219

    Article  Google Scholar 

  58. Kwon Y, Cunningham R (1998) Comparison of USA-DYNA finite element models for a stiffened shell subject to underwater shock. Comput Struct 66(1):127–144

    Article  Google Scholar 

  59. Newton R (1978) Effects of cavitation on underwater shock loading—axisymmetric geometry, technical ReportNPS-69-78-017PR. Naval Postgraduate School, Monterey

    Google Scholar 

  60. Newton RE (1978) Effects of cavitation on underwater shock loading. Part 1. Naval Postgraduate School, Monterey

    Google Scholar 

  61. Newton R (1980) Finite element analysis of shock-induced cavitation. ASCE Spring Convention, Portland

    Google Scholar 

  62. Newton RE (1981) Effects of cavitation on underwater shock loading-plane problem. Naval Postgraduate School, Monterey

    Google Scholar 

  63. Rehak ML, DiMaggio FL, Sandler IS (1985) Interactive approximations for a cavitating fluid around a floating structure. Comput Struct 21(6):1159–1175

    Article  Google Scholar 

  64. Shin YS, Schneider NA (2003) Ship shock trial simulation of USS Winston S. Churchill (DDG 81): modeling and simulation strategy and surrounding fluid volume effects, Shock and vibration symposium

    Google Scholar 

  65. Sprague M, Geers T (2004) A spectral-element method for modelling cavitation in transient fluid–structure interaction. Int J Numer Methods Eng 60(15):2467–2499

    Article  Google Scholar 

  66. Klaseboer E, Hung K, Wang C, Wang C, Khoo B, Boyce P, Debono S, Charlier H (2005) Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. J Fluid Mech 537:387–413

    Article  Google Scholar 

  67. Webster KG (2007) Investigation of close proximity underwater explosion effects on a ship-like structure using the multi-material arbitrary lagrangian eulerian finite element method, Virginia Tech

    Google Scholar 

  68. Huang H, Jiao QJ, Nie JX, Qin JF (2011) Numerical modeling of underwater explosion by one-dimensional ANSYS-AUTODYN. J Energ Mater 29(4):292–325

    Article  CAS  Google Scholar 

  69. Mair HU (1999) Hydrocodes for structural response to underwater explosions. Shock Vib 6(2):81–96

    Article  Google Scholar 

  70. Teeling-Smith R, Nurick G (1991) The deformation and tearing of thin circular plates subjected to impulsive loads. Int J Impact Eng 11(1):77–91

    Article  Google Scholar 

  71. Nurick G, Gelman M, Marshall N (1996) Tearing of blast loaded plates with clamped boundary conditions. Int J Impact Eng 18(7–8):803–827

    Article  Google Scholar 

  72. Espinosa HD, Lee S, Moldovan N (2006) A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading. Exp Mech 46(6):805–824

    Article  Google Scholar 

  73. Rajendran R, Paik J, Lee J (2007) Of underwater explosion experiments on plane plates. Exp Tech 31(1):18–24

    Article  Google Scholar 

  74. Houlston R, Slater J (1991) Global and local modelling of naval panels subjected to shock loads. Comput Struct 40(2):353–364

    Article  Google Scholar 

  75. Houlston R, Slater J (1993) Damage analysis with ADINA of naval panels subjected to a confined air-blast wave. Comput Struct 47(4–5):629–639

    Article  Google Scholar 

  76. Jiang J, Olson M (1991) Nonlinear dynamic analysis of blast loaded cylindrical shell structures. Comput Struct 41(1):41–52

    Article  Google Scholar 

  77. Kambouchev N, Noels L, Radovitzky R (2006) Nonlinear compressibility effects in fluid-structure interaction and their implications on the air-blast loading of structures. J Appl Phys 100(6):063519

    Article  CAS  Google Scholar 

  78. Kambouchev N, Noels L, Radovitzky R (2007) Numerical simulation of the fluid–structure interaction between air blast waves and free-standing plates. Comput Struct 85(11–14):923–931

    Article  Google Scholar 

  79. Kambouchev N, Radovitzky R, Noels L (2007) Fluid–structure interaction effects in the dynamic response of free-standing plates to uniform shock loading. J Appl Mech 74(5):1042–1045

    Article  Google Scholar 

  80. Gupta N (2007) Deformation and tearing of circular plates with varying support conditions under uniform impulsive loads. Int J Impact Eng 34(1):42–59

    Article  Google Scholar 

  81. Louca L, Pan Y, Harding J (1998) Response of stiffened and unstiffened plates subjected to blast loading. Eng Struct 20(12):1079–1086

    Article  Google Scholar 

  82. Ramajeyathilagam K, Vendhan C (2004) Deformation and rupture of thin rectangular plates subjected to underwater shock. Int J Impact Eng 30(6):699–719

    Article  Google Scholar 

  83. DeRuntz J (1989) The underwater shock analysis code and its applications, In 60th shock and vibration symposium proceedings

    Google Scholar 

  84. Hammond L, Grzebieta R (2000) Structural response of submerged air-backed plates by experimental and numerical analyses. Shock Vib 7(6):333–341

    Article  Google Scholar 

  85. Abrate S (1997) Localized impact on sandwich structures with laminated facings. Appl Mech Rev 50(2):69–82

    Article  Google Scholar 

  86. Hall D (1989) Examination of the effects of underwater blasts on sandwich composite structures. Compos Struct 11(2):101–120

    Article  Google Scholar 

  87. McCoy R, Sun C (1997) Fluid-structure interaction analysis of a thick-section composite cylinder subjected to underwater blast loading. Compos Struct 37(1):45–55

    Article  Google Scholar 

  88. Hassan N, Batra R (2008) Modeling damage in polymeric composites. Compos Part B-Eng 39(1):66–82

    Article  CAS  Google Scholar 

  89. Batra R, Hassan N (2008) Blast resistance of unidirectional fiber reinforced composites. Compos Part B-Eng 39(3):513–536

    Article  CAS  Google Scholar 

  90. Batra RC, Hassan NM (2009) Modeling of progressive damage in high strain—rate deformations of fiber-reinforced composites. In: Major accomplishments in composite materials and sandwich structures. Springer, Dordrecht, pp 89–111

    Chapter  Google Scholar 

  91. Batra R, Hassan N (2007) Response of fiber reinforced composites to underwater explosive loads. Compos Part B-Eng 38(4):448–468

    Article  Google Scholar 

  92. Nezami M, Jam J, Nia N (2009) Dynamic response of free–free laminated curved panels subjected to explosive blast. Polym Compos 30(9):1199–1203

    Article  CAS  Google Scholar 

  93. LeBlanc J, Shukla A (2010) Dynamic response and damage evolution in composite materials subjected to underwater explosive loading: an experimental and computational study. Compos Struct 92(10):2421–2430

    Article  Google Scholar 

  94. LeBlanc J, Shukla A (2011) Dynamic response of curved composite panels to underwater explosive loading: experimental and computational comparisons. Compos Struct 93(11):3072–3081

    Article  Google Scholar 

  95. Russell DM (1997) Error measures for comparing transient data: Part I, development of a comprehensive error measure. In: Proceedings of the 68th shock and vibration symposium. Shock and Vibration Exchange, Hunt Valley

    Google Scholar 

  96. Mäkinen K (1999) The transverse response of sandwich panels to an underwater shock wave. J Fluid Struct 13(5):631–646

    Article  Google Scholar 

  97. McMeeking RM, Spuskanyuk A, He M, Deshpande V, Fleck N, Evans A (2008) An analytic model for the response to water blast of unsupported metallic sandwich panels. Int J Solid Struct 45(2):478–496

    Article  Google Scholar 

  98. Librescu L, Nosier A (1990) Response of laminated composite flat panels to sonic boom and explosive blast loadings. AIAA J 28(2):345–352

    Article  Google Scholar 

  99. Librescu L, Oh SY, Hohe J (2004) Linear and non-linear dynamic response of sandwich panels to blast loading. Compos Part B-Eng 35(6–8):673–683

    Article  Google Scholar 

  100. Wei Z, Dharmasena K, Wadley H, Evans A (2007) Analysis and interpretation of a test for characterizing the response of sandwich panels to water blast. Int J Impact Eng 34(10):1602–1618

    Article  Google Scholar 

  101. Wadley H, Dharmasena K, Chen Y, Dudt P, Knight D, Charette R, Kiddy K (2008) Compressive response of multilayered pyramidal lattices during underwater shock loading. Int J Impact Eng 35(9):1102–1114

    Article  Google Scholar 

  102. Panahi B, Ghavanloo E, Daneshmand F (2011) Transient response of a submerged cylindrical foam core sandwich panel subjected to shock loading. Mater Des 32(5):2611–2620

    Article  Google Scholar 

  103. Gopinath G, Batra RC (2018) A common framework for three micromechanics approaches to analyze elasto-plastic deformations of fiber-reinforced composites. Int J Mech Sc 148(2018):540–553

    Article  Google Scholar 

  104. Batra RC, Gopinath G, Zheng JQ (2012) Damage and failure in low energy impact of Fiber-reinforced polymeric composite laminates. Compos Struct 94:540–547

    Article  Google Scholar 

  105. Robertson DD, Mall S (1994) Micromechanical analysis for thermo-viscoplastic behavior of unidirectional fibrous composites. Compos Sci Technol 50:483–496

    Article  CAS  Google Scholar 

  106. Batra RC et al. (2018) Unpublished results

    Google Scholar 

  107. Batra RC, Xiao J (2013) Finite deformations of curved laminated St. Venant-Kirchhoff beam using layer-wise third order shear and Normal deformable beam theory (TSNDT). Compos Struct 97:147–1614

    Article  Google Scholar 

  108. Taetragool U, Shah PH, Halls VA, Zheng JQ, Batra RC (2017) Stacking sequence optimization for maximizing the first failure initiation load followed by progressive failure analysis until the ultimate load. Compos Struct 180:1007–1021

    Article  Google Scholar 

  109. Qin Z, Batra RC (2009) Local slamming impact of sandwich composite hulls. Int J Solid Struct 46(10):2011–2035

    Article  Google Scholar 

  110. Das K, Batra RC (2011) Local water slamming impact on sandwich composite hulls. J Fluid Struct 27(4):523–551

    Article  Google Scholar 

  111. Xiao J, Batra RC (2014) Delamination in sandwich panels due to local water slamming loads. J Fluid Struct 48:122–155

    Article  Google Scholar 

  112. Qu Y, Batra RC (2017) Constrained moving least-squares immersed boundary method for fluid-structure interaction analysis. Int J Numer Methods Fluids 85(12):675–692

    Article  Google Scholar 

  113. Monasse L, Daru V, Mariotti C, Piperno S, Tenaud C (2012) A conservative coupling algorithm between a compressible flow and a rigid body using an embedded boundary method. J Comput Phys 231:2977–2994

    Article  Google Scholar 

  114. Pasquariello V, Hammerl G, Örley F et al (2016) A cut-cell finite volume–finite element coupling approach for fluid–structure interaction in compressible flow. J Comput Phys 307:670–695

    Article  Google Scholar 

  115. Qu Y, Shi R, Batra RC (2018) An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids. J Comput Phys 354:672–691

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Office of Naval Research grant, N000141812548, to Virginia Polytechnic Institute and State University. Views expressed in this paper are those of the authors and neither of their organizations nor of the ONR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romesh C. Batra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Batra, R.C., Chattopadhyay, A.P., Shah, P.H. (2020). Response of Sandwich Structures to Blast Loads. In: Lee, S. (eds) Advances in Thick Section Composite and Sandwich Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-31065-3_10

Download citation

Publish with us

Policies and ethics