Skip to main content

Soil Resilience

  • Chapter
  • First Online:
The Soils of India

Abstract

Following an understanding on soil health assessment as well as land evaluation to a particular soil, this chapter highlights the concept of soil quality and soil resilience, and further to develop a minimum data set of soil quality indicators for deriving soil quality index (SQI), and methods for evaluating it through indicator approach to various soil functions. Though the framework for SQI is put in use for monitoring soil quality, efforts are made to use such a framework for resilience purpose to assess ease and degree of recovery of degraded soil. Based on the experiments conducted on farmers’ fields in Madhya Pradesh, it was observed and recorded that the integrated use of wood charcoal (5.4 t/ha) along with balanced fertilization to soybean and wheat crops improved soil resilience index. Further studies on soil resilience were conducted elsewhere across the country in degraded soils. The chapter may thus answer what integration of inputs could achieve effective soil resilience for soil sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol IP, Sehgal JL (1994) Degraded lands and their rehabilition in India. In: Soil resilience and sustainable land use. pp 129–144

    Google Scholar 

  • Andrews SS, Karlen DL, Cambardell CA (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Sci Soc Am J 68:1945–1962

    Article  CAS  Google Scholar 

  • Andrews SS, Karlen DL, Mitchell JP (2002a) A comparision of soil quality indexing methods for vegetable system in northern California. Agric Ecosyst Environ 90:25–45

    Article  Google Scholar 

  • Andrews SS, Mitchell JP, Mancinrlli R, Karlen DL, Hartz TK, Horwarth WR, Pettygrove GS, Scow KM, Munk DS (2002b) On farm assessment of soil quality in California’s Central Valley. Agron J 94:12–23

    Article  Google Scholar 

  • Benjamin JG, Mikh M, Nielsen DC, Vigil MF, Calderon F, Henry WB (2007) Cropping intensity effects on physical properties of a no-till silt loam. Soil Sci Soc Am J 71:1160–1165

    Article  CAS  Google Scholar 

  • Bhattacharyya T, Pal DK, Deshpande SB (1993) Genesis and transformation of minerals in the formation of red (Alfisols) and black (Inceptisols and Vertisols) soils on Deccan Basalt in the Western Ghats, India. J Soil Sci 44:159–171

    Article  CAS  Google Scholar 

  • Bhattacharyya T, Pal DK, Srivastava P (1999) Role of zeolites in persistence of high altitude ferruginous Alfisols of the humid tropical Western Ghats, India. Geoderma 90:263–276

    Article  CAS  Google Scholar 

  • Chandran P, Ray SK, Bhattacharyya T, Srivastava P, Krishnan P, Pal DK (2005) Lateritic soils of Kerala, India: their mineralogy, genesis and taxonomy. Aust J Soil Res 43:839–852

    Article  CAS  Google Scholar 

  • Chaudhury J, Mandal UK, Sharma KL, Ghosh H, Mandal B (2005) Assessing soil quality under long-term rice-based cropping system. Commun Soil Sci Plant Anal 36:1141–1161

    Article  CAS  Google Scholar 

  • Dalal RC, Bridge BJ (1996) Aggregation and organic matter storage in subhumid and semi-arid soils. In: Carter MR, Stewart BA (eds) Advances in soil science. CRC Lewis Publishers, Boca Raton, FL, pp 263–307

    Google Scholar 

  • Gilkes RJ, Prakongkep N (2016) How the unique properties of soil kaolin affect the fertility of tropical soils. Appl Clay Sci 131:100–106

    Article  CAS  Google Scholar 

  • Halvorson AD, Peterson GA, Reule CA (2002) Tillage system and crop rotation effects on dry land crop yields and soil carbon in the Central Great Plains. Agron J 94:1429–1430

    Article  Google Scholar 

  • Indoria AK, Srinivasa Rao Ch, Sharma KL, Sammi Reddy K (2017) Conservation agriculture—a panacea to improve soil physical health. Curr Sci 112(1):52–61

    Article  Google Scholar 

  • Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harres RF, Schuman GE (1997) Soil quality: a concept definition, and framework for evaluation. Soil Sci Soc Am J 61:4–10

    Article  CAS  Google Scholar 

  • Kuan HL, Hallett PD, Griffiths BS, Gregory AS, Watts CW, Whitmore AP (2007) The biological and physical stability and resilience of a selection of Scottish soils to stresses. Eur J Soil Sci 58:811–821

    Article  Google Scholar 

  • Kumar S, Patra AK, Singh D, Purakayastha TJ (2014) Long-term chemical fertilization along with farmyard manure enhances resistance and resilience of soil microbial activity against heat stress. J Agron Crop Sci 200(2):21–23

    Article  Google Scholar 

  • Kundu S, Vassanda Coumar M, Saha JK, Adhikari T, Rajendran S, Patra AK (2015) Protocol for resilience of degraded Vertisol with field level validation. J Soil Water Conserv 14(4):310–316

    Google Scholar 

  • Lakaria BL, Singh M, Sammi Reddy K, Biswas A K. Jha P, Chaudhary R S, Singh A B and Subba Rao A (2012) Carbon addition and storage under integrated nutrient management in soybean–wheat cropping sequence in a vertisol of Central India. Natl Acad Sci Lett India (May–June 2012) 35(3):131–137. https://doi.org/10.1007/s40009-012-0040-z

    Article  CAS  Google Scholar 

  • Lal R (1995) Global soil erosion by water and carbon dynamics. In: Lal R, Kimble JM, Livine E, Stewart BA (eds) Soil and global change. CRC Press, Boca Raton, Florida, pp 131–141

    Google Scholar 

  • Lal R (1997) Degradation and resilience of soils. Philosophical transactions of the royal society of London B 352:997–1010

    Article  Google Scholar 

  • Lynch J (2002) Resilience of the rhizosphere to anthropogenic disturbance. Biodegradation 13:21–27

    Article  CAS  Google Scholar 

  • Mandal UK, Ramachandran K, Sharma KL, Satyam B, Venkanna K, Udaya Bhanu M, Mandal M, Masane RN, Narsimlu B, Rao KV, Srinivasarao Ch, Korwar GR, Venkateswarlu B (2011) Assessing soil quality in a semiarid tropical watershed using a geographic information system. Soil Sci Soc Am J 75(3):1144–1160

    Article  CAS  Google Scholar 

  • Mandal UK, Sharma KL, Venkanna K, Solomon Raju AJ, Pushpanjali Srinivasa Rao, Ch Rahul N M, Adake RV, Prasad JVNS, Venkatesh G, Venkatravamma K (2017) Sustaining soil quality, resilience and critical carbon level under different cropping systems. Curr Sci 112(9):1882–1894

    Article  CAS  Google Scholar 

  • Manna MC, Ganguly TK (2003) Impact of integrated nutrient management practices and land use on soil organic matter dynamics, soil biological processes and sustainable productivity in semi-arid and tropical India. In: Acharya CL, Sammi Reddy K, Sharma AK (eds) Proceedings of the ICAR-ACIAR workshop on Farmyard manure: life cycle analysis and management, Indian Institute of Soil Science, Bhopal, 18–20 Feb 2003

    Google Scholar 

  • Muralidharudu Y, Subba Rao A, Sammi Reddy K (eds) (2012) District-Wise soil test based fertilizer and manure recommendations for balanced nutrition of crops. Indian Institute of Soil Science, Bhopal, pp 1–270

    Google Scholar 

  • Nayak DC, Sen TK, Chamuah GS, Sehgal JL (1996) Nature of soil acidity in some soils of Manipur. J Indian Soc Soil Sci 44:209–214

    CAS  Google Scholar 

  • Pal DK, Sarkar D, Bhattacharyya T, Datta SC, Chandran P, Ray SK (2013) Impact of climate change in soils of semi-arid tropics (SAT). In: Bhattacharyya T et al (eds) Climate change and agriculture. Studium Press, New Delhi, pp 113–121

    Google Scholar 

  • Pal DK, Wani SP, Sahrawat KL, Srivastava P (2014) Red ferruginous soils of tropical Indian environments: a review of the pedogenic processes and its implications for edaphology. Catena 121:260–278. https://doi.org/10.1016/j.catena2014.05.023; Panda N (1998) Fertiliser News 43(5):39–50

  • Patiram (2001) Proceedings of national seminar on water and land management for social and economic upliftment of NE region, Guwahati, pp 11–19

    Google Scholar 

  • Patiram (2003) Soil resilience in North Eastern Hills. Indian J Hill Farm 16 (1, 2): 1–8

    Google Scholar 

  • Paton TR (1978) The formation of soil material. George Allen and Unwin. LondPratibha G, Sharma KL (2016) Conservation agriculture and organic farming for adaptation and mitigation of climate change. In: Venkateswarlu B, Ravindra Chary G, Gurbachan Singh YS (eds) Shivay climate resilient agronomy , The Indian Society of Agronomy, New Delhi, pp 220–231

    Google Scholar 

  • Ray SK, Chandran P, Durge SL (2001) Soil taxonomic rationale: kaolinitic and mixed mineralogy classes of highly weathered ferruginous soils. In: Abstract, 66th Annual convention and national seminar on “Developments in Soil Science” of the Indian Society of Soil Science, Udaipur, Rajasthan, pp 243–244

    Google Scholar 

  • Saha R, Hati KM, Mohanty M, Jha Pramod, Somasundaram J, Chaudhary RS (2015) Characterization of soil physical resilience by index properties and strength characteristics of selected Indian soils. J AgriSearch 2(3):195–199

    Google Scholar 

  • Sharma KL, Mandal UK, Srinivas K, Vittal KPR, Mandal Biswapati, Grace JK, Ramesh V (2005) Long-term soil management effects on crop yields and soil quality in a dryland Alfisol. Soil Till Res 83:246–259

    Article  Google Scholar 

  • Sharma KL, Raju KR, Das SK, Rao BR, Prasad C, Kulkarni BS, Srinivas K, Kusuma GJ, Madhavi M, Gajbhiye PN (2009) Soil fertility and quality assessment under tree-, crop-, and pasture-based land-use systems in a rainfed environment. Commun Soil Sci Plant Anal 40(9), 1436–1461

    Article  CAS  Google Scholar 

  • Sharma KL, Grace JK, Mishra PK, Venkateswarlu B, Nagdeve MB, Gabhane VV, Sankar GM, Korwar GR, Chary GR, Rao C, Srinivasa G, Pravin N, Madhavi M, Mandal UK, Srinivas K, Ramachandran K (2011) Effect of soil and nutrient-management treatments on soil quality indices under cotton-based production system in rainfed semi-arid tropical Vertisol. Commun Soil Sci Plant Anal 42(11):1298–1315

    Article  CAS  Google Scholar 

  • Sharma KL, Balaguruvaiah D, Babu MVS, Reddy BR, Srinivasa Rao Ch, Mishra PK, Grace JK, Ramesh G, Madhavi M, Srinivas K, Mandal UK, Korwar GR, Maruthi SG, Ravindra CG (2010) Long-term impact of soil and nutrient management practices on soil quality in rainfed Alfisols at Anantapur in Andhra Pradesh. Indian J Dryland Agric Res Dev 25(1):74–85

    Google Scholar 

  • Sharma KL, Grace JK, Mandal UK, Gajbhiye PN, Srinivas K, Korwar GR, Bindu VH, Ramesh V, Ramachandran K, Yadav SK (2008) Evaluation of long-term soil management practices using key indicators and soil quality indices in a semi-arid tropical Alfisol. Aust J Soil Res 2008(46):368–377

    Article  Google Scholar 

  • Sharma SP, Sharma J, Subehia SK (1998) Proceedings of long term fertility management through integrated plant nutrient supply. IISS, Bhopal, pp 125–138

    Google Scholar 

  • Shukla MK, Lal R, Ebinger M (2004) Soil quality indicators for reclaimed mine soils in Southeastern Ohio. Soil Sci 169(2):133–141

    Article  CAS  Google Scholar 

  • Smeck NE, Runge ECA, Mackintosh EE (1983) Dynamics and genetic dealing of soil system. In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil

    Google Scholar 

  • Sunanda B (2016) Soil resilience: a new approach to recover degraded soil. Biotech Articles; Views 1333. www.biotecharticles.com/Agriculture-Article/Soil

  • Syers JK (1997) Managing soils for long-term productivity. Philos Trans Royal Soc London (B) 352:1011–1021

    Article  Google Scholar 

  • Velayutham M, Pal DK, Bhattacharyya T (2000) Organic carbon stock in soils of India. In: Lal R, Kimble JM, Stewart BA (eds) Global climate change and tropical ecosystems. Lewis Publishers, Boca Raton, Fl, pp 71–96

    Google Scholar 

  • Venkatesh G, Venkateswarlu B, Gopinath KA, Srinivasarao Ch, Korwar GR, Sanjeeva Reddy B, Prasad JVNS, Grover M, Raju BMK, Sasikala Ch, Venkanna K (2013) Biochar production technology for conservation of cotton stalk bioresidue into biochar and its characterization for soil amendment qualities. Indian J Dryland Agric Res Dev 28(1):48–57

    Google Scholar 

  • Vittal KPR, Vijayalakshmi K, Rao UMB (1990) The effect of cumulative erosion and rainfall on sorghum, pearl millet and castor bean yields under dry farming conditions in Andhra Pradesh, India. Exp Agric 26:429–439

    Article  Google Scholar 

  • Yaalon DH (1975) Conceptual models in pedogenesis. Can soil forming functions be solved? Geoderma 14:189–205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sammi Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, K.S. et al. (2020). Soil Resilience. In: Mishra, B. (eds) The Soils of India. World Soils Book Series. Springer, Cham. https://doi.org/10.1007/978-3-030-31082-0_12

Download citation

Publish with us

Policies and ethics