Skip to main content

Dynamic Factor Models

  • Chapter
  • First Online:
Macroeconomic Forecasting in the Era of Big Data

Part of the book series: Advanced Studies in Theoretical and Applied Econometrics ((ASTA,volume 52))

Abstract

Dynamic factor models are parsimonious representations of relationships among time series variables. With the surge in data availability, they have proven to be indispensable in macroeconomic forecasting. This chapter surveys the evolution of these models from their pre-big-data origins to the large-scale models of recent years. We review the associated estimation theory, forecasting approaches, and several extensions of the basic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When (f t) and (e t) are not Gaussian, the procedure gives QML estimators.

  2. 2.

    A weaker assumption can also be used: \(0< \underline {c} \leq \liminf \limits _{n \to \infty }\lambda _r(\frac {\boldsymbol \Lambda '\boldsymbol \Lambda }{n})<\limsup \limits _{n \to \infty } \lambda _1(\frac {\boldsymbol \Lambda '\boldsymbol \Lambda }{n})\leq \overline {c}< \infty \) (see Doz, Giannone, & Reichlin, 2011).

  3. 3.

    Mixed data sampling (MIDAS) regression models, proposed by Ghysels, Santa-Clara, and Valkanov (2004), represent an alternative way of dealing with missing data.

  4. 4.

    The working paper version appeared in 1994 in NBER Working Papers 4643.

  5. 5.

    Without this approximation, the Kalman filter would be untractable, since it would be necessary to take the M T possible trajectories of S 1, …, S T. For further details, see Kim (1994) and the references therein.

  6. 6.

    Their model combines the MS-MIDAS model (Guérin & Marcellino, 2013) and the factor-MIDAS model (Marcellino & Schumacher, 2010).

References

  • Ahn, S. C., & Horenstein, A. R. (2013). Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

    Article  Google Scholar 

  • Amengual, D., & Watson, M. W. (2007). Consistent estimation of the number of dynamic factors in a large N and T panel. Journal of Business & Economic Statistics, 25(1), 91–96.

    Article  Google Scholar 

  • Anderson, T. (1984). An Introduction to Multivariate Statistical Analysis (2nd ed.). New York: Wiley.

    Google Scholar 

  • Anderson, T., & Rubin, H. (1956). Statistical inference in factor analysis. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. Contributions to Econometrics, Industrial Research, and Psychometry (Vol. 5).

    Google Scholar 

  • Andrews, D. W. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica, 61(4), 821–856.

    Article  Google Scholar 

  • Aruoba, S. B., Diebold, F. X., & Scotti, C. (2009). Real-time measurement of business conditions. Journal of Business & Economic Statistics, 27(4), 417–427.

    Article  Google Scholar 

  • Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71(1), 135–171.

    Article  Google Scholar 

  • Bai, J. (2004). Estimating cross-section common stochastic trends in nonstationary panel data. Journal of Econometrics, 122(1), 137–183.

    Article  Google Scholar 

  • Bai, J., & Li, K. (2012). Statistical analysis of factor models of high dimension. The Annals of Statistics, 40(1), 436–465.

    Article  Google Scholar 

  • Bai, J., & Li, K. (2016). Maximum likelihood estimation and inference for approximate factor models of high dimension. Review of Economics and Statistics, 98(2), 298–309.

    Article  Google Scholar 

  • Bai, J., & Liao, Y. (2013). Statistical inferences using large estimated covariances for panel data and factor models. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2353396.

  • Bai, J., & Liao, Y. (2016). Efficient estimation of approximate factor models via penalized maximum likelihood. Journal of Econometrics, 191(1), 1–18.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191–221.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2004). A panic attack on unit roots and cointegration. Econometrica, 72(4), 1127–1177.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2006). Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions. Econometrica, 74(4), 1133–1150.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2007). Determining the number of primitive shocks in factor models. Journal of Business & Economic Statistics, 25(1), 52–60.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2008a). Forecasting economic time series using targeted predictors. Journal of Econometrics, 146(2), 304–317.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2008b). Large dimensional factor analysis. Foundations and Trends in Econometrics, 3(2), 89–163.

    Article  Google Scholar 

  • Bai, J., & Ng, S. (2009). Boosting diffusion indices. Journal of Applied Econometrics, 24(4), 607–629.

    Article  Google Scholar 

  • Bai, J., & Wang, P. (2016). Econometric analysis of large factor models. Annual Review of Economics, 8, 53–80.

    Article  Google Scholar 

  • Baltagi, B. H., Kao, C., & Wang, F. (2017). Identification and estimation of a large factor model with structural instability. Journal of Econometrics, 197(1), 87–100.

    Article  Google Scholar 

  • Banbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. Journal of Applied Econometrics, 29(1), 133–160.

    Article  Google Scholar 

  • Banbura, M., & Rünstler, G. (2011). A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP. International Journal of Forecasting, 27(2), 333–346.

    Article  Google Scholar 

  • Banerjee, A., Marcellino, M., & Masten, I. (2007). Forecasting macroeconomic variables using diffusion indexes in short samples with structural change. In D. Rapach & M. Wohar (Eds.), Forecasting in the presence of structural breaks and model uncertainty. Bingley: Emerald Group Publishing.

    Google Scholar 

  • Barigozzi, M. (2018). Dynamic factor models. Lecture notes. London School of Economics.

    Google Scholar 

  • Bartholomew, D. J. (1987). Latent Variable Models and Factors Analysis. Oxford: Oxford University Press.

    Google Scholar 

  • Barhoumi, K., Darné, O., & Ferrara, L. (2014). Dynamic factor models: A review of the literature. OECD Journal: Journal of Business Cycle Measurement and Analysis, 2013(2), 73–107 (OECD Publishing, Centre for International Research on Economic Tendency Surveys).

    Google Scholar 

  • Bates, B. J., Plagborg-Möller, M., Stock, J. H., & Watson, M.W. (2013). Consistent factor estimation in dynamic factor models with structural instability. Journal of Econometrics, 177(2), 289–304.

    Article  Google Scholar 

  • Bessec, M., & Bouabdallah, O. (2015). Forecasting GDP over the business cycle in a multi-frequency and data-rich environment. Oxford Bulletin of Economics and Statistics, 77(3), 360–384.

    Article  Google Scholar 

  • Boivin, J., & Ng, S. (2006). Are more data always better for factor analysis? Journal of Econometrics, 132(1), 169–194.

    Article  Google Scholar 

  • Bräuning, F., & Koopman, S. J. (2014). Forecasting macroeconomic variables using collapsed dynamic factor analysis. International Journal of Forecasting, 30(3), 572–584.

    Article  Google Scholar 

  • Breitung, J., & Eickmeier, S. (2006). Dynamic factor models. Allgemeines Statistisches Archiv, 90(1), 27–42.

    Article  Google Scholar 

  • Breitung, J., & Eickmeier, S. (2011). Testing for structural breaks in dynamic factor models. Journal of Econometrics, 163(1), 71–84.

    Article  Google Scholar 

  • Breitung, J., & Eickmeier, S. (2016). Analyzing international business and financial cycles using multi-level factor models: A comparison of alternative approaches. In Dynamic Factor Models (pp. 177–214). Bingley: Emerald Group Publishing Limited.

    Google Scholar 

  • Breitung, J., & Tenhofen, J. (2011). GLS estimation of dynamic factor models. Journal of the American Statistical Association, 106(495), 1150–1166.

    Article  Google Scholar 

  • Brillinger, D. R. (1981). Time series: Data analysis and theory. Philadelphia: SIAM.

    Google Scholar 

  • Burns, A. F., & Mitchell, W. C. (1946). Measuring business cycles. New York: NBER.

    Google Scholar 

  • Camacho, M., Perez-Quiros, G., & Poncela, P. (2014). Green shoots and double dips in the euro area: A real time measure. International Journal of Forecasting, 30(3), 520–535.

    Article  Google Scholar 

  • Camacho, M., Perez-Quiros, G., & Poncela, P. (2015). Extracting nonlinear signals from several economic indicators. Journal of Applied Econometrics, 30(7), 1073–1089.

    Article  Google Scholar 

  • Chamberlain, G. (1983). Funds, factors, and diversification in arbitrage pricing models. Econometrica, 51(5), 1305–1323.

    Article  Google Scholar 

  • Chamberlain, G., & Rothschild, M. (1983). Arbitrage, factor structure, and mean-variance analysis on large asset markets. Econometrica, 51(5), 1281–1304.

    Article  Google Scholar 

  • Chauvet, M. (1998). An econometric characterization of business cycle dynamics with factor structure and regime switching. International Economic Review, 39(4), 969–996.

    Article  Google Scholar 

  • Chauvet, M., & Piger, J. (2008). A comparison of the real-time performance of business cycle dating methods. Journal of Business & Economic Statistics, 26(1), 42–49.

    Article  Google Scholar 

  • Chauvet, M., & Senyuz, Z. (2016). A dynamic factor model of the yield curve components as a predictor of the economy. International Journal of Forecasting, 32(2), 324–343.

    Article  Google Scholar 

  • Chen, L., Dolado, J. J., & Gonzalo, J. (2014). Detecting big structural breaks in large factor models. Journal of Econometrics, 180(1), 30–48.

    Article  Google Scholar 

  • Cheng, X., Liao, Z., & Schorfheide, F. (2016). Shrinkage estimation of high dimensional factor models with structural instabilities. Review of Economic Studies, 83(4), 1511–1543.

    Article  Google Scholar 

  • Choi, I. (2012). Efficient estimation of factor models. Econometric Theory, 28(2), 274–308.

    Article  Google Scholar 

  • Connor, G., & Korajczyk, R. A. (1986). Performance measurement with the arbitrage pricing theory: A new framework for analysis. Journal of Financial Economics, 15(3), 373–394.

    Article  Google Scholar 

  • Connor, G., & Korajczyk, R. A. (1988). Risk and return in an equilibrium apt: Application of a new test methodology. Journal of Financial Economics, 21(2), 255–289.

    Article  Google Scholar 

  • Connor, G., & Korajczyk, R. A. (1993). A test for the number of factors in an approximate factor model. Journal of Finance, 48(4), 1263–1291.

    Article  Google Scholar 

  • Corradi, V., & Swanson, N. R. (2014). Testing for structural stability of factor augmented forecasting models. Journal of Econometrics, 182(1), 100–118.

    Article  Google Scholar 

  • Del Negro, M., & Otrok, C. (2008). Dynamic factor models with time-varying parameters: Measuring changes in international business cycles. Federal Reserve Bank of New York, Staff Report, 326, 46.

    Google Scholar 

  • Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.

    Article  Google Scholar 

  • Diebold, F. X. (2003). Big data dynamic factor models for macroeconomic measurement and forecasting. In L. H. M. Dewatripont & S. Turnovsky (Eds.), Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress of the Econometric Society (pp. 115–122).

    Google Scholar 

  • Diebold, F. X., & Rudebusch, G. D. (1996). Measuring business cycles: A modern perspective. Review of Economics and Statistics, 78(1), 67–77.

    Article  Google Scholar 

  • Doz, C., Giannone, D., & Reichlin, L. (2011). A two-step estimator for large approximate dynamic factor models based on Kalman filtering. Journal of Econometrics, 164(1), 188–205.

    Article  Google Scholar 

  • Doz, C., Giannone, D., & Reichlin, L. (2012). A quasi–maximum likelihood approach for large, approximate dynamic factor models. Review of Economics and Statistics, 94(4), 1014–1024.

    Article  Google Scholar 

  • Doz, C., & Petronevich, A. (2016). Dating business cycle turning points for the french economy: An MS-DFM approach. In Dynamic Factor Models (pp. 481–538). Bingley: Emerald Group Publishing Limited.

    Chapter  Google Scholar 

  • Doz, C., & Petronevich, A. (2017). On the consistency of the two-step estimates of the MS-DFM: A Monte Carlo study. Working paper.

    Google Scholar 

  • Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32(2), 407–499.

    Article  Google Scholar 

  • Engle, R., & Watson, M. (1981). A one-factor multivariate time series model of metropolitan wage rates. Journal of the American Statistical Association, 76(376), 774–781.

    Article  Google Scholar 

  • Favero, C. A., Marcellino, M., & Neglia, F. (2005). Principal components at work: The empirical analysis of monetary policy with large data sets. Journal of Applied Econometrics, 20(5), 603–620.

    Article  Google Scholar 

  • Fiorentini, G., Galesi, A., & Sentana, E. (2018). A spectral EM algorithm for dynamic factor models. Journal of Econometrics, 205(1), 249–279.

    Article  Google Scholar 

  • Forni, M., & Lippi, M. (2011). The general dynamic factor model: One-sided representation results. Journal of Econometrics, 163(1), 23–28.

    Article  Google Scholar 

  • Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2000). The generalized dynamic factor model: Identification and estimation. Review of Economics and Statistics, 82(4), 540–554.

    Article  Google Scholar 

  • Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2005). The generalized dynamic factor model: One-sided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830–840.

    Article  Google Scholar 

  • Forni, M., Giannone, D., Lippi, M., & Reichlin, L. (2009). Opening the black box: Structural factor models with large cross sections. Econometric Theory, 25(5), 1319–1347.

    Article  Google Scholar 

  • Forni, M., Hallin, M., Lippi, M., & Zaffaroni, P. (2015). Dynamic factor models with infinite-dimensional factor spaces: One-sided representations. Journal of Econometrics, 185(2), 359–371.

    Article  Google Scholar 

  • Forni, M., Hallin, M., Lippi, M., & Zaffaroni, P. (2017). Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis. Journal of Econometrics, 199(1), 74–92.

    Article  Google Scholar 

  • Forni, M., Giovannelli, A., Lippi, M., & Soccorsi, S. (2018). Dynamic factor model with infinite-dimensional factor space: Forecasting. Journal of Applied Econometrics, 33(5), 625–642.

    Article  Google Scholar 

  • Fu, D. (2007). National, regional and metro-specific factors of the us housing market. In Federal Reserve Bank of Dallas Working Paper 0707.

    Google Scholar 

  • Fuleky, P., & Bonham, C. S. (2015). Forecasting with mixed frequency factor models in the presence of common trends. Macroeconomic Dynamics, 19(4), 753–775.

    Article  Google Scholar 

  • Geweke, J. (1977). The dynamic factor analysis of economic time series. In D. J. Aigner & A. S. Goldberger (Eds.), Latent variables in socio-economic models. Amsterdam: North Holland.

    Google Scholar 

  • Ghysels, E., Santa-Clara, P., & Valkanov, R. (2004). The MIDAS touch: Mixed Data Sampling regression models. CIRANO Working paper.

    Google Scholar 

  • Giannone, D., Reichlin, L., & Small, D. (2008). Nowcasting: The real-time informational content of macroeconomic data. Journal of Monetary Economics, 55(4), 665–676.

    Article  Google Scholar 

  • Groen, J. J., & Kapetanios, G. (2016). Revisiting useful approaches to data-rich macroeconomic forecasting. Computational Statistics & Data Analysis, 100, 221–239.

    Article  Google Scholar 

  • Guérin, P., & Marcellino, M. (2013). Markov-switching MIDAS models. Journal of Business & Economic Statistics, 31(1), 45–56.

    Article  Google Scholar 

  • Hallin, M., & Lippi, M. (2013). Factor models in high-dimensional time series a time-domain approach. Stochastic Processes and their Applications, 123(7), 2678–2695.

    Article  Google Scholar 

  • Hallin, M., & Liska, R. (2007). The generalized dynamic factor model: Determining the number of factors. Journal of the American Statistical Association, 102, 603–617.

    Article  Google Scholar 

  • Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–384.

    Article  Google Scholar 

  • Han, X., & Inoue, A. (2015). Tests for parameter instability in dynamic factor models. Econometric Theory, 31(5), 1117–1152.

    Article  Google Scholar 

  • Harding, D., & Pagan, A. (2003). A comparison of two business cycle dating methods. Journal of Economic Dynamics and Control, 27(9), 1681–1690.

    Article  Google Scholar 

  • Harvey, A. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge University Press

    Google Scholar 

  • Inoue, A., & Kilian, L. (2008). How useful is bagging in forecasting economic time series? A case study of US consumer price inflation. Journal of the American Statistical Association, 103(482), 511–522.

    Article  Google Scholar 

  • Jackson, L. E., Kose, M. A., Otrok, C., & Owyang, M. T. (2016). Specification and estimation of Bayesian dynamic factor models: A Monte Carlo analysis with an application to global house price comovement. In Dynamic Factor Models (pp. 361–400). Bingley: Emerald Group Publishing Limited.

    Chapter  Google Scholar 

  • Jones, C. S. (2001). Extracting factors from heteroskedastic asset returns. Journal of Financial Economics, 62(2), 293–325.

    Article  Google Scholar 

  • Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32(4), 443–482.

    Article  Google Scholar 

  • Jungbacker, B., & Koopman, S. J. (2014). Likelihood-based dynamic factor analysis for measurement and forecasting. Econometrics Journal, 18(2), C1–C21.

    Article  Google Scholar 

  • Jungbacker, B., Koopman, S. J., & van der Wel, M. (2011). Maximum likelihood estimation for dynamic factor models with missing data. Journal of Economic Dynamics and Control, 35(8), 1358–1368.

    Article  Google Scholar 

  • Kelly, B., & Pruitt, S. (2015). The three-pass regression filter: A new approach to forecasting using many predictors. Journal of Econometrics, 186(2), 294–316.

    Article  Google Scholar 

  • Kim, C.-J. (1994). Dynamic linear models with Markov-switching. Journal of Econometrics, 60(1–2), 1–22.

    Article  Google Scholar 

  • Kim, C.-J., & Nelson, C. R. (1998). Business cycle turning points, a new coincident index, and tests of duration dependence based on a dynamic factor model with regime switching. Review of Economics and Statistics, 80(2), 188–201.

    Article  Google Scholar 

  • Kim, M.-J., & Yoo, J.-S. (1995). New index of coincident indicators: A multivariate Markov switching factor model approach. Journal of Monetary Economics, 36(3), 607–630.

    Article  Google Scholar 

  • Koopman, S., & Harvey, A. (2003). Computing observation weights for signal extraction and filtering. Journal of Economic Dynamics and Control, 27(7), 1317–1333.

    Article  Google Scholar 

  • Kose, M. A., Otrok, C., & Whiteman, C. H. (2003). International business cycles: World, region, and country-specific factors. American Economic Review, 1216–1239.

    Google Scholar 

  • Kose, M. A., Otrok, C., & Whiteman, C. H. (2008). Understanding the evolution of world business cycles. Journal of International Economics, 75(1), 110–130.

    Article  Google Scholar 

  • Lawley, D. N., & Maxwell, A. E. (1971). Factor analysis as statistical method (2nd ed.). London: Butterworths.

    Google Scholar 

  • Li, H., Li, Q., & Shi, Y. (2017). Determining the number of factors when the number of factors can increase with sample size. Journal of Econometrics, 197(1), 76–86.

    Article  Google Scholar 

  • Lütkepohl, H. (2014). Structural vector autoregressive analysis in a data rich environment: A survey. Berlin: Humboldt University.

    Book  Google Scholar 

  • Ma, S., & Su, L. (2018). Estimation of large dimensional factor models with an unknown number of breaks. Journal of Econometrics, 207(1), 1–29.

    Article  Google Scholar 

  • Magnus, J. R., & Neudecker, H. (2019). Matrix differential calculus with applications in statistics and econometrics. New York: Wiley.

    Book  Google Scholar 

  • Marcellino, M., & Schumacher, C. (2010). Factor MIDAS for nowcasting and forecasting with ragged-edge data: A model comparison for German GDP. Oxford Bulletin of Economics and Statistics, 72(4), 518–550.

    Article  Google Scholar 

  • Mariano, R., & Murasawa, Y. (2003). A new coincident index of business cycles based on monthly and quarterly series. Journal of Applied Econometrics, 18(4), 427–443.

    Article  Google Scholar 

  • Moench, E., & Ng, S. (2011). A hierarchical factor analysis of us housing market dynamics. Econometrics Journal, 14(1), C1–C24.

    Article  Google Scholar 

  • Moench, E., Ng, S., & Potter, S. (2013). Dynamic hierarchical factor models. Review of Economics and Statistics, 95(5), 1811–1817.

    Article  Google Scholar 

  • Onatski, A. (2009). Testing hypotheses about the number of factors in large factor models. Econometrica, 77(5), 1447–1479.

    Article  Google Scholar 

  • Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues. Review of Economics and Statistics, 92(4), 1004–1016.

    Article  Google Scholar 

  • Otrok, C., & Whiteman, C. H. (1998). Bayesian leading indicators: Measuring and predicting economic conditions in Iowa. International Economic Review, 39(4), 997–1014.

    Article  Google Scholar 

  • Peña, D., & Yohai, V. J. (2016). Generalized dynamic principal components. Journal of the American Statistical Association, 111(515), 1121–1131.

    Article  Google Scholar 

  • Pinheiro, M., Rua, A., & Dias, F. (2013). Dynamic factor models with jagged edge panel data: Taking on board the dynamics of the idiosyncratic components. Oxford Bulletin of Economics and Statistics, 75(1), 80–102.

    Article  Google Scholar 

  • Proietti, T., & Moauro, F. (2006). Dynamic factor analysis with non-linear temporal aggregation constraints. Journal of The Royal Statistical Society Series C, 55(2), 281–300.

    Article  Google Scholar 

  • Reis, R., & Watson, M. W. (2010). Relative goods’ prices, pure inflation, and the Phillips correlation. American Economic Journal: Macroeconomics, 2(3), 128–57.

    Google Scholar 

  • Sargent, T. J., & Sims, C. A. (1977). Business cycle modeling without pretending to have too much a priori economic theory. New Methods in Business Cycle Research, 1, 145–168.

    Google Scholar 

  • Shumway, R. H., & Stoffer, D. S. (1982). An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3(4), 253–264.

    Article  Google Scholar 

  • Spearman, C. (1904). General intelligence objectively determined and measured. The American Journal of Psychology, 15(2), 201–292.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. (1989). New indexes of coincident and leading economic indicators. NBER Macroeconomics Annual, 4, 351–394.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. (1991). A probability model of the coincident economic indicators. Leading Economic indicators: New approaches and forecasting records, 66, 63–90.

    Google Scholar 

  • Stock, J. H., & Watson, M. W. (1993). A procedure for predicting recessions with leading indicators: Econometric issues and recent experience. In Business cycles, indicators and forecasting (pp. 95–156). Chicago: University of Chicago Press.

    Chapter  Google Scholar 

  • Stock, J. H., & Watson, M. (2002a). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460), 1167–1179.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. (2002b). Macroeconomic forecasting using diffusion indexes. Journal of Business and Economic Statistics, 20(2), 147–162.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. W. (2005). Implications of dynamic factor models for VAR analysis. Cambridge: National Bureau of Economic Research. Technical report.

    Google Scholar 

  • Stock, J. H., & Watson, M. (2006). Forecasting with many predictors. Handbook of Economic Forecasting, 1, 515.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. (2008). The evolution of national and regional factors in US housing construction. In Volatility and Time Series Econometrics: Essays in Honor of Robert F. Engle.

    Google Scholar 

  • Stock, J. H., & Watson, M. (2009). Forecasting in dynamic factor models subject to structural instability. The Methodology and Practice of Econometrics. A Festschrift in Honour of David F. Hendry, 173, 205.

    Google Scholar 

  • Stock, J. H., & Watson, M. W. (2011). Dynamic factor models. In Handbook on Economic Forecasting. Oxford: Oxford University Press.

    Google Scholar 

  • Stock, J. H., & Watson, M. W. (2012). Disentangling the channels of the 2007–09 recession. Brookings Papers on Economic Activity, 1, 81–135.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M.W. (2016). Dynamic factor models, factor-augmented vector autoregressions, and structural vector autoregressions in macroeconomics. Handbook of Macroeconomics, 2, 415–525.

    Article  Google Scholar 

  • Su, L., & Wang, X. (2017). On time-varying factor models: Estimation and testing. Journal of Econometrics, 198(1), 84–101.

    Article  Google Scholar 

  • Watson, M. W., & Engle, R. F. (1983). Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models. Journal of Econometrics, 23(3), 385–400.

    Article  Google Scholar 

  • Yamamoto, Y., & Tanaka, S. (2015). Testing for factor loading structural change under common breaks. Journal of Econometrics, 189(1), 187–206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Fuleky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doz, C., Fuleky, P. (2020). Dynamic Factor Models. In: Fuleky, P. (eds) Macroeconomic Forecasting in the Era of Big Data. Advanced Studies in Theoretical and Applied Econometrics, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-31150-6_2

Download citation

Publish with us

Policies and ethics